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Free-electron Optical Nonlinearities in Plasmonic
Nanostructures: A Review of the Hydrodynamic Description

Alexey V. Krasavin,* Pavel Ginzburg, and Anatoly V. Zayats

Requirements of integrated photonics and miniaturisation of optical devices
demand efficient nonlinear components not constrained by conventional
macroscopic nonlinear crystals. Intrinsic nonlinear response of free carriers in
plasmonic materials provides opportunities to design both second- and
third-order nonlinear optical properties of plasmonic nanostructures and
control light with light using Kerr-type nonlinearities as well as achieve
harmonic generation. This review summarises principles of free-carrier
nonlinearities in the hydrodynamic description in both perturbative and
non-perturbative regimes, considering also contribution of nonlocal effects.
Engineering of harmonic generation, solitons, nonlinear refraction and
ultrafast all-optical switching in plasmonic nanostructures and metamaterials
are discussed. The full hydrodynamic consideration of nonlinear dynamics of
free carriers reveals key contributions to the nonlinear effects defined by the
interplay between a topology of the nanostructure and nonlinear response of
the fermionic gas at the nanoscale, allowing design of high effective
nonlinearities in a desired spectral range. Flexibility and unique features of
free-electron nonlinearities are important for nonlinear plasmonic applications
in free-space as well as integrated and quantum nanophotonic technologies.

1. Introduction

Nonlinear regime of interaction of light and matter became ac-
cessible with the development of lasers. Despite nonlinear ef-
fects being weak and requiring high intensities of light to be
observed, nonlinear optics enables numerous important appli-
cations in modern technologies from harmonic generation, opti-
cal parametric amplification and mode-locking in ultrafast lasers
to holography, self- and cross-modulation of optical signals, and
optical solitons for information processing, as well as para-
metric down-conversion for quantum information applications.
Due to the weakness of the nonlinear response of conventional
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materials, only selected, nonlinear mate-
rials exhibit considerable nonlinear op-
tical effects at reasonable light inten-
sities, and typically a long propaga-
tion length in a material is needed to
achieve significant nonlinear effects.[1,2]

Recent development of integrated
optics and miniaturisation of optical
components and devices put forward
new challenges for nonlinear optics at
the (sub)wavelength scales, where geo-
metrical constrains limit the applicability
of conventional macroscopic nonlinear
crystals and approaches which rely on
phase matching or long interaction
length between optical beams. At the
same time, nonlinear effects are essential
for optical signal processing in photonic
integrated circuits.
In order to increase the efficiency

of light-matter interactions in a linear
domain, plasmonic modes in conduc-
tors and their nanostructures, includ-
ing metal-dielectric metamaterials, have

recently been widely used.[3–9] Plasmonic excitations, either prop-
agating surface plasmon polaritons (SPPs) on extended met-
als surfaces or localised surface plasmons (LSPs) in metallic
nanoparticles, are related to a coupled state of photons and coher-
ent free-carrier oscillations near a conductor-dielectric interface.
Plasmonic excitations provide electromagnetic field confinement
near the interface and, as the result, the local field enhancement.
This has profound consequences for nonlinear optical processes
which depend on the local field intensity in a superlinear man-
ner and, thus, can be strongly enhanced near the metal-dielectric
interface in the presence of plasmonic resonances.[10,11]

Nonlinear plasmonics has been developed utilising the above-
described properties of plasmonic field, while also taking ad-
vantage of the nanoscale range of plasmonic modes enabling to
achieve nonlinear response on subwavelength scales and, thus,
being naturally compatible with integrated optics. There are two
typical approaches: (i) to use the field enhancement provided
by surface plasmons to induce a nonlinear response in nonlin-
ear dielectric near the metal interface in hybrid metal-dielectric
systems or (ii) to harvest the nonlinearity of plasmonic mate-
rials themselves. In the latter case, a nonlinear response orig-
inates from the dynamics of non-equilibrium free-electrons in
the medium under the influence of strong electromagnetic field
of the illumination. Indeed, the metal nonlinear response is one
of the strongest per unit interaction length and fastest, with the
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femtosecond-scale response time determined by relaxation of
the excited electrons to the equilibrium state, governed primar-
ily by electron-electron and electron-phonon scattering. Both ap-
proaches were exploited for enhancement of coherent nonlinear
interactions, such as harmonics generation and wave mixing, as
well as Kerr-type nonlinearities for controlling light with light.
The latter is a third-order nonlinear effect leading to the modifi-
cation of permittivity of the material and is manifested in self- or
cross-phasemodulation and induced transparency or absorption.
Here, we will overview principles of free-electron nonlinear-

ities in plasmonic nanostructures and their applications. A full
hydrodynamic model of free-electron nonlinearities will be de-

scribed to address coherent as well as Kerr-type nonlinearities of
metals.We discuss, in turn, engineering of harmonic generation,
nonlinear refraction and ultrafast all-optical switching in metal-
lic nanostructures and plasmonic metamaterials, taking into ac-
count nonlocal response as well as the behaviour in the so-called
epsilon-near-zero regime. Finally, nonlinear surface plasmon po-
laritons and plasmon-solitons will be briefly introduced.

2. Free-electron Dynamics in Plasmonic
Nanostructures

2.1. Linear Free-electron Dynamics

Optical properties of materials with high concentration of free
carriers (electrons or holes), such asmetals or highly doped semi-
conductors, as well as their films and nanostructures are gov-
erned by coupling of electromagnetic field to the coherentmotion
of free-carrier plasma. Comprehensive description of the carrier
dynamics in a quasi-classical approach can be established consid-
ering a set of hydrodynamic-type equations treating the electron
plasma as a charge fluid:[12–15]

m (∂tυ + υ · ∇υ)+ γmυ = −e (E+ υ ×H)− ∇ p/n, (1)

∂tn + ∇ · (nυ) = 0, (2)

where n and υ are the hydrodynamic variables representing the
carrier density and velocity, respectively, e andm are the electron
charge and mass, respectively, γ is the electron scattering rate,
E and H are the local electric and magnetic fields, respectively.
In particular, the hydrodynamicmodel includes terms describing
convective acceleration υ · ∇υ, Lorenz force enυ ×H and quan-
tum pressure ∇ p/n, the latter giving rise to nonlocal effects in
both linear and nonlinear responses. The hydrodynamic electron
dynamics can be derived from the Boltzmann equation[13,16] or
from density functional formalism[12,17], its advanced description
can be obtained from quantum mechanical calculations.[18] The
quantum pressure ∇ p/n, can be evaluated within the Thomas-
Fermi theory of an ideal fermionic gas with p given by [12,14]

p = (
3π 3)2/3 �

2

5m
n5/3. (3)

When treating the linear behaviour of the electron gas, the non-
local term ∇ p/n in Eq. (1) is frequently represented after lineari-
sation asmβ2∇n/n0, where β is the spatial dispersion parameter
and n0 is the equilibrium electron density. How to determine a
value of β2 was a topic of extended discussions (for a comprehen-
sive overview see Ref. [12]). For low frequencies (ω � γ ), from

the Thomas-Fermi theory, β2 = (3π3)
2/3

3
�
2

m2 n
2/3
0 = υ2F

3 , where υF is

the Fermi velocity. At high frequencies (ω � γ ), β2 = 3υ2F
5 repre-

sents the dynamic pressure.[12]

The hydrodynamic treatment was first used by Ritchie in his
seminal work,[19] where he predicted the existence of surface
plasmons. Considering the behaviour of the free-carrier gas in
a plasmonic nanostructure under illumination with an electro-

Laser Photonics Rev. 2018, 12, 1700082 C© 2017 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1700082 (2 of 24)



www.advancedsciencenews.com www.lpr-journal.org

Figure 1. a) Snapshot of the electric field (E y colour map and E field lines) of a surface plasmon polariton wave propagating along the interface between
a metal and a dielectric, together with the related charge distribution. Inset shows the SPP dispersion at a Si/Au interface. b) Snapshot of the electric
field of a localised surface plasmon produced by oscillating charges in a metal nanoparticle.

magnetic wave, the optical response can be calculated with a help
of Eqs. (1) and (2). For a finite height of the potential well in which
the gas is located, the quantum effects related to spill-out of an
electron gas in the potential barrier become important.[20,21] The
hydrodynamic model combined with the additional Lorentzian
resonance terms, which describe the contributions from the in-
terband transitions present in a medium, is capable to repro-
duce metal susceptibilities over the entire spectral range.[22] The
mesoscopic hydrodynamic approach is integrable with electro-
magnetic modelling, enabling studies of large-scale electromag-
netic systems with nontrivial geometries. It is worth noting that
ab initio microscopic models while providing more quantitative
results[23,24] are extremely time-consuming due to the compu-
tation complexity involved[25] and in many cases limited to a
low number of considered atoms, addressing the systems much
smaller than accessible experimentally in vast majority of cases.
Therefore, it is not surprising that the hydrodynamic model,
much more robust from this point of view, was often and suc-
cessfully applied to reveal a vast variety of nanoscale optical phe-
nomena involving materials with free carriers.
In the first approximation, the terms responsible for convec-

tion, Lorenz and nonlocal response are usually dropped out, and
the dynamics of free-electron gas under the excitation by an elec-
tromagnetic wave at a given frequency ω is described by the
equation:

mn∂tυ + γmnυ = −enE, (4)

where E = E0exp(iωt) is the electric field component of the wave.
This is a linear differential equation and, thus, the response of the
electron gas is linear and harmonic, described by the displace-
ment r = r0exp(iωt), with ∂tr = υ. Knowing the displacement, it
is easy to obtain the resulting equivalent dielectric polarisation of
the gas, and finally the permittivity of the metal, which is given
by the well-known Drude formula

ε
f r ee
D (ω) = 1− ω2

p

ω2 + γωi
, (5)

where ωp = √
ne2/(mε0) is the plasma frequency. Introducing

the permittivity related to core electrons εcor e (ω) which takes into

account the interband transitions, it can be rewritten as

εD (ω) = εcor e (ω)−
ω2

p

ω2 + γωi
. (6)

A direct consequence, easily seen from Eq. (6), is the pecu-
liarity of optical properties of metal, when below a certain fre-
quency the second term becomes greater than the first one, mak-
ing the overall dielectric permittivity negative. This, in turn leads
to the appearance of electromagnetic excitations specific tometal-
lic nanostructures: localised surface plasmons and surface plas-
mon polaritons.
Surface plasmon polariton is a propagating surface wave at

the continuous metal-dielectric interfaces (Figure 1a). The SPP
electromagnetic field has components both perpendicular to the
metal surface and parallel to it (along the wavevector k(ω)) and ex-
ponentially decays on both sides of the interface, providing sub-
wavelength confinement.[4,26] The SPP dispersion is given by

k (ω) = ω

c

√
εdεD (ω)

εd + εD (ω)
, (7)

where εd is the permittivity of the dielectric adjacent to the
metal.[4,26] The dispersion of SPP waves calculated using the
Drude formula (Eq. (5)) for the metal permittivity is presented
in the inset to Figure 1a. At low frequencies, it is very close
to the dispersion of light in the adjacent dielectric, correspond-
ing to a weakly bounded surface wave, then passing through
the truly polaritonic regime at high k asymptotically approaches
ωSP = ωp/

√
1+ εd line corresponding to non-propagating sur-

face plasmons. As can be easily seen, SPP has a wave vector larger
than that of a photon, which means that SPP is a slow wave accu-
mulating energy from incoming photons and providing the field
enhancement near the metal interface compared to the field of
the incident light. The SPP dispersion and, therefore, the field
confinement and enhancement can be modified by structuring
the interface, either metal or dielectric medium, thus achieving
plasmonic waveguides (structuring across the SPP propagation
direction)[5,27] or plasmonic crystals (structuring in the plane of
the SPP propagation).[4]

Localised surface plasmons (LSPs) are associated with the
electron plasma oscillations in confined (subwavelength) ge-
ometries, e.g., metal nanoparticles (Figure 1b). LSP resonances
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Figure 2. a) SPP dispersion in various approximations. Crosses correspond to the experimental data for Al. Reproduced with permission.[13] Copyright
1986, Springer-Verlag. b) Position of a surface plasmon resonance as a function of the nanoparticle diameter. Reproduced with permission.[35] Copyright
2013, Science Wise Publishing and De Gruyter. c) Extinction cross-section (normalised to the geometrical cross-section πr 2) of an Ag nanoparticle
of decreasing radii calculated using: local response approximation (red dash-dotted lines), hydrodynamic model (blue dashed lines) and GNOR hy-
drodynamic model (black solid lines). Reproduced with permission.[33] Copyright 2015, IOP Publishing. d) Absorption cross-section spectra for an Ag
nanoparticle with r = 1.5 nm calculated using: LRA – local response approximation, HW-HD – hard wall hydrodynamic model, SC-HD – self-consistent
hydrodynamic model which takes into account the spill-out effect. Reproduced with permission.[39] Copyright 2015, Macmillan Publishers Limited.

depend on the particle size, shape and refractive index of sur-
roundings. LSPs can be resonantly excited with light of the appro-
priate frequency irrespectively of the excitation light wavevector.
For example, the fundamental dipolar plasmonic resonance of a
spherical particle with a size much smaller when the wavelength
corresponds to a dramatic increase in its polarisability:

α (ω) = 4πR3 εD (ω)− εd

εD (ω)+ 2εd
, (8)

which is defined by aminimum of the denominator and happens
at the frequency approximately given by

Re [εD (ωLSP )] = −2εd . (9)

Since LSPs are confined near the nanoparticle, they have a small
mode volume and, therefore, provide a significant electromag-
netic field enhancement, which is limited in the first approxima-
tion by their quality factor determined by Ohmic and radiative
losses, as well as nonlocal effects in the case of ultrasmall sizes.
The advanced description provided by the full hydrodynamic

Eqs. (1)–(3) is more complicated. If all the equations are lin-
earised, then for a plane wave propagating along an arbitrarily-

chosen z direction, the hydrodynamic permittivity presents a
tensor[12]

εm = diag (εT , εT , εL ) . (10)

Here, the tensor signifies different permittivity values for the
transverse and longitudinal electric field components allowed in
the medium, while the medium is strictly isotropic, εT = ε∞ −

ω2p

ω2+γωi and εL = ε∞ − ω2p

ω2+γωi−β2k2 with ε∞ = εcor e (ω → ∞) be-
ing the high-frequency permittivity of the metal and for the sim-
plicity the frequency dependence of εcor e (ω) was omitted. Apply-
ing this model to the surface plasmons and taking for simplicity
γ = 0 (lossless case) and ε∞ = 1, it can be found that the nonlocal
corrections bring essential modifications to the high-frequency
(surface plasmon) part of the SPP dispersion, which becomes de-
pendent on the wave vector:[12,28–31]

ω = ωp√
2

(
1+ βk√

2ωp

)
, (11)

which is the Ritchie formula. Typical metals and semiconduc-
tors exhibit self-consistent changes of the electron densities
near the surface, which leads to a more sophisticated plasmonic
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dispersion models showing a good agreement with the experi-
mental data (Figure 2).[12,32]

In the past, optical properties of mainly bulk and macroscopic
objects were studied and the Drude description was proven
to faithfully describe their properties. With the availability of
metal nanostructures and nanoparticles, with their subwave-
length characteristic sizes, the deviations from the Drude model
becomemore pronounced due to the increased relative contribu-
tion of other terms in the hydrodynamic model (Eq. (1)), which
is especially pronounced when considering nonlinear response
of the nanostructures. However, the full hydrodynamic descrip-
tion given by Eqs. (1) and (2) also proved to be an invaluable
tool for understanding linear optical properties ofmetallic nanos-
tructures, particularly when their size reaches truly nanometric
scale.[33,34] In this case, the Lorenz and convection terms in Equa-
tion (1) are omitted, as purely nonlinear, while the quantum pres-
sure term is linearised to the form mβ2∇n/n0 and being propor-
tional to the gradient of the carrier density introduces nonlocal
corrections. The influence of nonlocality, particularly dramatic in
nanoscale geometries, can already be seen in the most classical
example of plasmonic resonances in metallic nanoparticles, re-
sulting in their essential blue-shift as the radius of the nanoparti-
cle r approaches 5 nm (Figure 2a).[35–37] In the full hydrodynamic
description this can be successfully described by the resulting
modification of the nanoparticle polarisability[35]

αNL (ω) = 4πr 3
εD (ω)− εd · (1+ δNL )
εD (ω)+ 2εd (1+ δNL )

, (12)

by a nonlocal correction

δNL = εD (ω)− εcor e (ω)
εcor e (ω)

j1 (kLr )

kL Rj
′
1 (kLr )

, (13)

where

kL =
√

ω2 + ωγ i − ω2
p/εcor e (ω)/β (14)

is the wavenumber of an additional wave, now allowed to be ex-
cited in the nanoparticle, and j1 is the spherical Bessel function of
the first order. The excitation frequency of the dipolar resonance
is given by the pole of polarisability in Eq. (12):

Re
(
ωNL
LSP

) = ωp√
3

+
√
2β
2r

, (15)

where air was taken as the surrounding medium. Thus, the in-
fluence of the nonlocality increases with the size decrease. Fig-
ure 2b shows that the resonant shift derived from the hydrody-
namic theory describes the experimental results obtained by elec-
tron energy-loss spectroscopy very well.
In the generalized nonlocal optical response (GNOR) hydro-

dynamic model[33,38], an electron diffusion term eD∇n (D is the
diffusion constant) is incorporated in the continuity Eq. (2), re-
sulting in a well-known convection-diffusion equation

∂tn + ∇ · (nυ)− D∇2n = 0. (16)

The constitutive relation between the current J = −enυ + eD∇n
and the electric field E can be determined after linearisation of
Eqs. (1) and (16):

[
β2

ω (ω + iγ )
+ D

iω

]
∇ (∇ · J)+ J = σDE, (17)

where σD = iε0ω2
p/(ω + iγ ) is the usual Drude conductivity. If

GNOR is applied to a plasmonic resonance in ametallic nanopar-
ticle, the first term in the nonlocal term pre-factor leads to a shift
in the resonance position (returning Eq. (15)), while the second,
diffusion-related term, leads to a correction to the imaginary part
of the dipolar resonant frequency

Im
(
ωNL
LSP

) = −γ

2
+

√
6

12
Dωp

βr
, (18)

resulting in the increase of a resonant peak width (Figure 2c)[33]

(as confirmed with the authors of References [33] and [38], the cor-
rect coefficient in the second denominator of Eq. (18) is 12 and
not 24 as in Ref. 38). It must be stressed that the correction re-
lated to the broadening has a purely nonlocal nature and is not
related to any modification of the dissipative term γmυ, which
is incorporated in σD. Within the same approach, the require-
ment of an infinitely high potential barrier at the nanostructure
boundaries (a hard-wall condition) can be relaxed, allowing for
the electron spill-out effects, which leads to further elaboration
of the LSP resonance position. In this respect, it was shown that
the nonlocal correction and the spill-out effects have counteract-
ing influences (Figure 2d).[39,40] In the treatment of the spill-out
effects careful consideration should be given to the calculation
of the spatial dependence of the equilibrium electron density, to
which the results are very sensitive.[41]

Other examples of linear nonlocal hydrodynamic effects in-
clude the modification of the molecular fluorescence[42] as well
as the plasmonic field confinement and enhancement [43–46], the
latter effects lead to the re-evaluation of SERS efficiency [47] and
are also important in the context of nonlinear optics. For a recent
review on the linear nonlocal hydrodynamic phenomena we refer
the reader to Ref. [33].

2.2. Nonlinear Free-Electron Dynamics

It is in nonlinear optics where the hydrodynamic description
plays the crucial role, since the electron gas acts as the very source
of the nonlinearity. Indeed, the interaction of electromagnetic
fields with nano-objects made of arbitrary nonmagnetic materi-
als is described in terms of the induced polarisation P(r, t) via the
wave equation[48]

∇ × ∇ × E (r, t)+ 1
c2

∂ttE (r, t)+ μ0∂ttP (r, t) = 0, (19)

where E(r, t) is the electric field, c is the speed of light in
vacuum, and μ0 is the vacuum permeability. In general, the
spatio-temporal polarisability holds all the information on both
linear and nonlinear responses of the material, also including its
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chromatic dispersion. The polarisability of plasmonic structures
can be introduced in Eq. (19), via natural hydrodynamic variables:
the macroscopic position-dependent electron density n(r, t) and
velocity υ(r, t), which are subsequently related to the polarisation
current as

∂tP = J = −enυ. (20)

The crucial observation is that the full hydrodynamic descrip-
tion for the polarisation leads to inherently nonlinear behaviour.
As it follows from Eqs. (1) and (2), which are nonlinear in their
nature in terms of the hydrodynamic variables n and υ, the har-
monic excitation of a free-electron gas results in the genera-
tion of higher harmonics in the polarisation current J described
by n and υ. The harmonics are further intermixed in the re-
sulting electronic polarisation (Eq. (20)), which acts as a source
term for the generation of nonlinear harmonic fields (Equation
(19)). The set of nonlinear hydrodynamic equations (Eqs. (1)
and (2)) provides a self-consistent formulation of nonlinear op-
tical processes originating from free-carriers in plasmonic sys-
tems. The effects of both surface nonlinearities and nonlocal-
ity are taken into account via the boundary conditions imposed
by the Maxwell’s equations and vanishing current perpendicu-
lar to the metal boundaries. In a perturbative regime of light-
matter interactions (weak pump field), the leading nonlinear
polarisability is of the second order with respect to the hydro-
dynamic variables and is the result of the convective accelera-
tion term υ · ∇υ, the magnetic component of the Lorentz force
−eυ ×H, quantum pressure term ∇ p/n in Eq. (1), and the nυ
term in Eq. (20)[49] (see Section 4.1). Beyond the perturbative
regime, at very high peak excitation powers, higher-order non-
linear terms in the hydrodynamic description of the electron
gas need to be considered, resulting in the intermixing of bulk
and surface nonlinear effects, which will be discussed in Sec-
tion 6. The collective action of these terms ultimately defines
the nonlinear optical response of metals and other plasmonic
materials with high concentration of free carriers under visible
and infrared light illumination, away from the spectral range of
interband transitions. In particular, predictions of second-order
nonlinear optical properties[14,49] and Kerr-type nonlinearities,[50]

based on the hydrodynamic method, qualitatively agree with the
experiments.
Universal properties of all types of plasmonic nanostructures

important for nonlinear optical applications are (i) the field en-
hancement near the metal surface compared to the free space
field of the exciting light, (ii) strong sensitivity to the refractive
index changes near the metal surface,[19] and (iii) possibility to
engineer SPP mode dispersion or LSP resonances by controlling
nanostructure geometry and dielectric surroundings. Thus, the
resonant response can be tuned to the required operational wave-
length where nonlinear response needs to be enhanced. Intrinsic
nonlinearity of free-electron systems is also extremely fast with
the response time determined by the electron relaxation within
the conduction band,[9] and, thus, provides opportunities for the
implementation of ultrafast all-optical effects for modulating and
switching of light with light.

3. Basic Notions of Nonlinear Optics

Nonlinear optical interactions are relatively weak and require
high light intensities to observe. The field of the incident light
can however be significantly enhanced by coupling it to material
structures with a resonant electromagnetic response. In particu-
lar, the electromagnetic field of plasmonic excitations is localised
at the sub-wavelength scales near metal-dielectric interfaces, that
provides significant field enhancement and can boost nonlinear
optical effects. Generally, nonlinear optical phenomena are pro-
portional to higher powers of the driving field (e.g., a power of two
for second harmonic generation (SHG) which is a second-order
nonlinear process) and the induced polarisation can be expressed
as[2]

P (ω) = P(1) (ω)+ P(2) (ω)+ P(3) (ω)+ · · · (21)

with

P(1) (ω) = ε0χ
(1) (ω) · E (ω) , (22)

P(2) (ω) = ε0χ
(2) (ω = ω1 + ω2;ω1, ω2) : E (ω1)E (ω2)

+P′(2) (∇χ
(2), ∇E (ω1) ,∇E (ω2)

) + · · · (23)

P(3)(ω) = ε0χ
(3)(ω = ω1 + ω2 + ω3;ω1, ω2, ω3) · · ·E (ω1)E(ω2)E

× (ω3)+ P
′(3) (∇χ

(3),∇E (ω1) ,∇E (ω2) ,∇E (ω3)
) + · · · ,

(24)

where ε0 is the permittivity of vacuum, E(ωi ) are the electric fields
of themonochromatic components of the fundamental field with
corresponding frequencies ωi , and χ (n) are the nth-order optical
susceptibility tensors (χ (1) is the tensor of linear optical suscep-
tibility). The first terms in Eqs. (23) and (24) represent a bulk
nonlinear response in an electric dipole approximation, while the
second terms (P′(2) and P′(3)), which include spatial derivatives of
the fields and the nonlinear susceptibilities, represent nonlocal
nonlinear response. Particularly, for the second-order nonlinear
polarisation P(2)(ω), the latter includes magnetic dipolar and elec-
tric quadrupolar contributions.[2]

3.1. Coherent Nonlinearities

Applying Eqs. (21)–(24) to the case of a monochromatic funda-
mental field, in the electric dipole approximation one can obtain
E (nω) ∼ χ (n)En

loc(ω), where E (nω) is the field of the generated
nth harmonic, and E loc(ω) is the local fundamental field at the
place where the harmonic is generated. This local field is char-
acterized by a frequency and position dependent enhancement
factor L (ω, r) = E loc(ω, r)/E0(ω), where r defines the position
near (or in) the metal, which is related to the polarisability of the
nanostructure.[51] Thus, the effective nonlinear susceptibility can
be significantly increased near the resonances of the plasmonic
structure where the local electric field is enhanced. The generated
nonlinear harmonic near-field as well as its radiation in the far-
field, can be further enhanced if the electromagnetic resonances
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and the related field enhancement L (nω) are present at the gen-
erated frequency[52] E (nω) ∼ χ (n)L (nω)Ln(ω)En

0 (ω), which can be
alternatively recast in terms of the effective nonlinear suscepti-
bility χ

(n)
e f f = χ (n)L (nω)Ln(ω). This motivates the quest for the lo-

cal electromagnetic field enhancement achievable with various
nanostructures, and plasmonic nanostructures, providing very
high local electromagnetic fields, are perfect candidates for the
realisation of novel concepts for the augmentation of nonlinear
effects.[10] It should be noted, however, that in addition to the field
enhancement, the spatial overlap of the modes at the fundamen-
tal and harmonic frequencies and their phase relations are im-
portant for efficient harmonic generation from nanostructures.
A typical example is the phase-matching for SHG for propagat-
ing waves in bulk crystals (its analogue for localised modes[53] is
discussed below in Section 5.2).

3.2. Kerr-type Nonlinearities

The Kerr-type nonlinearity can be described by the changes of
the permittivity of the material under the action of control light
Ec (ωc ) and can be easily obtained from Eqs. (21) and (24) keeping
the leading third-order nonlinear term:

P (ω) = ε0
(
χ
(1) + χ

(3)|Ec (ωc )|2
)
E (ω) . (25)

Plasmonic excitations are extremely sensitive to the refractive in-
dex changes either in the metallic structure itself or in the sur-
rounding material.[54–56] This property can be exploited to con-
trol light with light, when a control beam induces the nonlinear
change, modifying the plasmonic resonances and through them
the propagation of a signal beam in waveguides or transmission
or reflection of light from plasmonic nanostructures.
Under illumination with the control light, the third-order

Kerr-type nonlinearity leads to the intensity-dependent refrac-
tive index n(I) = n0 + γ |Eloc (ωc )|2 and absorption α(I) = α0 +
β|Eloc (ωc )|2, where n0 and α0 are the linear refractive index and
absorption, respectively, |Eloc (ωc )|2 is the intensity of the con-
trol light, and γ and β are the nonlinear refraction (sometime
also called n2) and absorption coefficients, respectively. The in-
troduced changes in n(I) and α(I) can be used to alter phase
or absorption, respectively, of the signal light at a different fre-
quency interacting with the nanostructure (the so-called cross-
modulation). The strong beam can also influence itself via the
same effects, leading to the so-called self-modulation. The local
fields can be related to the polarisability of the plasmonic nanos-
tructures in the same way as discussed above, and the effec-
tive nonlinear refraction and absorption coefficients can be in-
troduced. The field enhancements inherent to plasmonic reso-
nances, facilitate this nonlinear effect lowering the required con-
trol light intensities.

4. Plasmonic Metals as Nonlinear Materials

Free-electron plasma in metals and other plasmonic materials
itself exhibits a strong nonlinear optical response due to com-
plex dynamics of the electron gas in the inhomogeneous driving
electromagnetic field. Free-electron nonlinearities provide one of
the largest effective nonlinear susceptibilities and lead to a vast

family of intriguing nonlinear phenomena. Furthermore, metal-
lic nonlinearities are inherently ultrafast allowing processing of
optical signals at up to a femtosecond timescale, which is the sec-
ond advantage of nonlinear plasmonics.
In terms of coherent nonlinearities, even-harmonic genera-

tion is forbidden in the dipolar approximation in centrosymmet-
ric materials but significant surface contributions are observed.
With the decrease of the nanostructure size, additional contribu-
tions from the bulk electron gasmay arise due to inhomogeneous
field and nonlocal effects. Unfortunately, even modern experi-
mental data on the nonlinear response ofmetallic nanostructures
from different sources are not always consistent because of the
strong dependence on hardly controllable parameters, such as
surface imperfections, nanostructure geometry variations, crys-
talline structure and other.
Kerr-type nonlinearities, which are predominately determined

by heating of the electron gas (its energy redistribution in a con-
duction band), strongly depend on the energy supplied by the
light to the electron plasma and, therefore, are strongly affected
by the pulse energy and duration in terms of their values and
time-response, varying over several orders of magnitude.[57] They
also may depend on the size of the particles and thickness of a
metal layer due to modification of the electron scattering rate in
nanostructures.[58–60]

Both coherent and Kerr-type nonlinearities ofmetalsmay orig-
inate from several families of physical effects. One is related
to the nonlinear dynamics of the free carriers plasma and is
present in all spectral ranges.[49,61,62] Another important contri-
bution comes from the interband electronic excitation, when the
driving field excites electrons from the valence band to conduc-
tion band of the metal.[63] This nonlinearity is strong due to high
efficiency of the absorption process but has a spectral range lim-
ited to the interband optical transitions. Recent experimental
reports and theoretical approaches, relevant to those nonlinear
mechanisms will be reviewed hereafter.

4.1. Perturbative Description of Coherent Nonlinearity of Metals

While Eqs. (1) and (2) can be directly used to describe the non-
linear response in the most general non-perturbative manner (as
will be done in Section 6), a perturbative treatment allows to elu-
cidate physics behind it. In order to solve the hydrodynamic equa-
tions in the case of relatively weak illumination intensities, small
nonlinear corrections to the hydrodynamic variables can be as-
sumed. Then, the hydrodynamic variables of the free-electron gas
in Eqs. (1) and (2) can be represented as[14,49]

n (r, t) = n0 + n1 (r) e−ωt + n2 (r) e−2ωt + c.c. + · · · , (26)

υ (r, t) = υ1 (r) e−ωt + υ2 (r) e−2ωt + c.c. + · · · , (27)

where n0 is the steady state nonperturbed density of the electron
gas, nu(r) and υu(r) (u = 1, 2, · · · ) are the perturbative corrections
to the electron density and velocity, respectively, appearing due to
nonlinearity of the hydrodynamic equations. This translates into
similar modifications of the polarisation P(r, t) (Eq. (20)):

P (r, t) = P1 (r) e−iωt + P2 (r) e−2iωt + c.c. + · · · , (28)
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which act as a source for nonlinear harmonic generation:

E (r, t) = E1 (r) e−iωt + E2 (r) e−2iωt + c.c. + · · · , (29)

H (r, t) = H1 (r) e−iωt +H2 (r) e−2iωt + c.c. + · · · . (30)

Here Ei (r) and Hi (r) are the high-harmonic perturbative cor-
rections to the local electric and magnetic fields, respectively. Ex-
pressing the hydrodynamic Eqs. (1) and (2) in terms of polari-
sation P(r, t)[14,22,28] and expansions given by Eqs. (28)–(30), one
obtains the fundamental and second harmonic polarisations tak-
ing the zero- and the first-order perturbation terms[14,48]

υ2
F

3
∇ (∇ · P1)+

(
ω2 + iωγ

)
P1 = −n0e2

m
E1, (31)

υ2
F

3
∇ (∇ · P2)+

(
ω2 + iωγ

)
P2 = −n0e2

m
E2 + SNL

2 , (32)

SNL
2 = e

m
E1 (∇ · P1)+ iωe

m
P1 ×H1 − ω2

n0e
[(∇ · P1)P1

+ (P1 · ∇)P1]+ 2
9

υ2
F

n0e
(∇ · P1)∇ (∇ · P1) , (33)

which, coupled with the Maxwell’s equations

∇ × ∇ × E1 −
(ω

c

)2
E1 = μ0ω

2P1, (34)

∇ × ∇ × E2 −
(
2ω
c

)2

E2 = 4μ0ω
2P2, (35)

formulate the full set of equations for the calculation of the sec-
ond harmonic response. The first term in Eq. (31) and (32) pro-
portional to υ2

F /3 describes the linear nonlocal response for both
first and second harmonic fields, while the components of SNL

2 ,
which depend on the field derivatives, result in a nonlinear non-
local response. Similar equations can be written for the higher
perturbative orders, e.g., for third and higher harmonic genera-
tion.
In the case of small losses (γ � ω), Eqs. (31)–(33) can be

simplified to reveal the physical nature of the second har-
monic nonlinear polarisation.[14] Considering separately a thin
sub-nanometre layer near metallic surface where the screening
charge is accumulated (and, thus, the nonlocal effects are impor-
tant) and the bulk of the metal, the second harmonic nonlinear
source P2 can be presented as a sum of the contributions from a
near-surface layer

Psur f
2,⊥ = χ

(2),sur f
⊥⊥⊥ E1,⊥E1,⊥, (36)

Psur f
2,‖ = χ

(2),sur f
‖‖⊥ E1,‖E1,⊥ (37)

and bulk of the conductor

Pbulk
2 = χ

(2),bulk∇ (E1 · E1) , (38)

where χ
(2),sur f
⊥⊥⊥ and χ

(2),sur f
‖‖⊥ are the surface second-order nonlin-

ear susceptibilities, χ (2),bulk is the bulk second-order nonlinear

susceptibility, E1,⊥ and E1,‖ are the components of the local fun-
damental field, normal and tangential to the surface, respectively.
These terms were introduced by Rudnick and Stern[64] using phe-
nomenological parameters, which were estimated from the hy-
drodynamic approach with nonlocal linear response as[14]

[
χ
(2),sur f
⊥⊥⊥ , χ

(2),sur f
‖‖⊥ , χ

(2),bulk
]

= − eε0
mω2

(1− εD (ω))
[
a
4
, −1

2
,
1
8

]
,

(39)

where εD(ω) is the permittivity of the metal in the simplest case
considering εcor e (ω) = 1 and a is the coefficient defined by the
solution of the hydrodynamic equations in the screening region.
The exact value of the latter was not calculated in Ref. [14], though
it was stated that |a| is of the order of unity or less, but can
be increased if the frequency of the second harmonic is close
to the effective plasma frequency near the interface. The value
of a can be determined from the comparison with the experi-
ments. Expressions for surface and bulk nonlinear coefficients
without any additional phenomenological parameters can be ob-
tained neglecting nonlocality in the linear optical response.[65,66]

Even without the latter assumption, the second-order surface
nonlinear currents can be expressed only in terms of bulk
linear polarisation components, calculation of which do not re-
quire the resolution of the nonlocal equations.[67] The bulk con-
tribution can be also included into surface components, redefin-
ing them as χ

(2),sur f,e f f
⊥⊥⊥ = χ

(2),sur f
⊥⊥⊥ + χ (2),bulk/ε(2ω), χ (2),sur f,e f f

‖⊥⊥ =
χ (2),bulk/ε(2ω) and χ

(2),sur f,e f f
‖‖⊥ = χ

(2),sur f
‖‖⊥ .[68] The above consider-

ations were developed for a lossless hydrodynamic model. The
additional term in the nonlinear susceptibility of isotropic and
centrosymmetric bulk materials δ(2),bulk(E1 · ∇)E1 can be derived
in the framework of the hydrodynamic model by including the
Ohmic losses.[66] Experimentally, the term δbulk(E1 · ∇)E1 was ob-
served for metals using two-beam SHG experiments.[68] It was
shown that this term can be represented with surface electric
and magnetic currents,[69] which can be useful in the numerical
treatment of the problem. The consideration of a lossy medium
also leads to scaling of other nonlinear coefficients as γ /ω. In
Ref. [66], the influence of the interband transitions was addition-
ally taken into account, which can be important for matching the
experimental observations.[70]

4.2. Kerr Nonlinearity of Metals from the Hydrodynamic Model

Kerr nonlinearity coefficient can also be directly derived from
the hydrodynamic equations. The physical interpretation of the
effect is adopted from plasma physics and relies on the intro-
duction of conservative ponderomotive potential. Introduction of
the effective potential enables reformulation of the problem of
collective interaction of the electron gas and adoption of a sin-
gle electron description.[71] A nonlocal ponderomotive (Gaponov–
Miller) force[72] can be derived from the electronmotion in a non-
uniform electromagnetic field and is given by

FPM (r) = − 1
m

( e
ω

)2
(E (r)× (∇ × E (r)))+ E (r) · ∇E (r) . (40)
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The corresponding ponderomotive potential is then defined as

PM (r) = e2|E (r)|2/2mω2. (41)

As can be seen both from the above expression and from a
detailed analysis of electron motion in a single particle repre-
sentation, electrons will be pushed away from the region of the
high field intensity. Consequently, electron concentration at the
regions of high intensities will be reduced and, as the result,
the real part of the local permittivity, which can be obtained in
the framework of the Drude model, will become less negative.
The process of the electron plasma dilution is balanced by restor-
ing forces applied on an electron by surrounding carriers. The
intensity-dependent permittivity then is given by[50]

εPM
(|E (r)|2) = εD + 3

2

(
ωp

3π 2ε0�me

)2/3( e
ω

)4
|E (r)|2

= εD + χPM|E (r)|2, (42)

where εD(ω) is the permittivity of metal in the simplest case con-
sidering εcor e (ω) = 1 and χPM is the nonlinear ponderomotive
susceptibility. This Kerr-like coefficient is highly dispersive and
for telecom wavelengths is on the order of 10−18 m2/V2, compa-
rable with that of nonlinear glasses. Apart fromKerr solitons, this
type of nonlinearity could lead to an intensity-dependent cutoff
for SPP modes.[50]

4.3. Kerr-type Nonlinearity of Metals: Thermal Response of
Fermionic Gas

Light absorbed by metal either directly due to interband absorp-
tion or via excitation of surface plasmons followed by their fast (10
fs timescale) decay into hot electron excitations, leads in the first
instance to modification of the electron distribution in the con-
duction band. The electron-electron scattering processes (10s–
100s femtoseconds scale) that follow thermalise this nonequlib-
rium distribution establishing an excited state with the electron
distribution at an elevated electron temperature. Electron-
phonon scattering (on a picosecond timescale) converts this elec-
tron temperature into an increasedmaterial (lattice) temperature.
The increase in the electron temperature can easily reach several
thousands of Kelvins, but for the ultrashort pulses on femtosec-
ond and picosecond timescales with reasonable energies, thema-
terial temperature changes are often negligible. During several
hundreds of femtoseconds before the electron temperature in-
crease is dissipated through the electron-phonon interaction, the
optical properties of metal are dramatically changed, with both
real and imaginary parts of the permittivity being modified as
both are determined by the electron temperature.
Metal permittivity in this case can be represented within

the random phase approximation that includes the dependence
of the electron scattering on both electron (Te) and lattice
(TL) temperatures.[73,74] Within this approximation, the intensity-
dependent permittivity can be described as the sum of the intra-
band permittivity and interband permittivity εM = εintr a + εinter ,
which are dependent on the electron intraband (within the con-
duction band) and interband (in the case of Au, from the d-band

Figure 3. Transient electron dynamics in bulk gold for 200 fs (solid lines)
and 3 ps incident Gaussian pulses (dashed lines). When pump power P is
absorbed, giving rise to the absorbed power density PA , the latter creates
the nonthermalised electron density determined by the electron response
function hth (presented in the inset). Then, nonthermalised electrons are
converted to the thermalised hot electrons described by the temperature
elevated by �Te with respect to the lattice temperature. P and �Te are
ultimately directly connected through the electron-temperature transient
response function hT (inset). Reproduced with permission.[58] Copyright
2016, American Chemical Society.

to the conduction sp-band) transitions, respectively. The latter
term can be reduced to a hydrodynamic Drude-like model (see
Section 2.1) as

εintr a = ε∞ − ω2
p (TL )

ω2 + iωγintr a (ω, Te , TL )
, (43)

where γintr a(ω, Te , TL ) related to both electron–electron and
electron-phonon scattering, and the dependence of the bulk
plasma frequency on the lattice temperature comes frompossible
thermal expansion of the nanostructure. The consideration of the
interband transitions, which can be described using the random
phase approximation [75,76] and also results in the smearing of the
Fermi distribution of the free carriers, is beyond the scope of this
review devoted to free-electron nonlinearities. It should be noted
that the nonlinear response related to the interband transitions
also depends on electron and lattice temperatures.
The nonlinear response described by the two-temperature

model depends on the excitation and probe pulse durations if
they are comparable to the characteristic times of the electron
relaxation processes.[58] The excitation pulse is absorbed by the
metal almost instantaneously so that the mean absorbed power
density follows the shape of the incident pulse (Figure 3). The rise
of the thermalised electron energy density is delayed by 100s of
fs as the hot electrons release their energy and thermalise with a
characteristic time determined by electron-electron and electron-
phonon scattering rates. For short pulses (�100 fs), the rise of the
electron temperature on the leading edge of the pulse is governed
by the characteristic decay time of the nonthermalised electrons,
while on the trailing edge it is governed by the characteristic re-
laxation time of the thermalised electrons. Then increased lattice
temperatures dissipates on a multiple-picosecond scale until the
ground state thermal equilibrium is reached. Instead, for long
(>ps) pulses, the characteristic time scales of the electron dynam-
ics become too fast for a pulse to experience any effects of the de-
layed responses, therefore, it experiences a quasi-instantaneous
nonlinear response from the thermalised electrons. The interplay
between the pulse duration and timescale of different relaxation
processes determines for how long the pulse interact with the ex-
cited electron gas and the values of nonlinearity varies widely for
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both |Re(χ (3))| from 10−18 m2/V2 to 10−14 m2/V2 and |Im(χ (3))|
from 10−20 m2/V2 to 10−15 m2/V2, strongly decreasing for short
excitation pulses.[57] The relaxation time of the nonlinear changes
depends on the energy supplied by light to the metal (the scatter-
ing rates and electron and lattice heat capacities are temperature
dependent), as well as on the geometric and modal structure of
the plasmonic system and thus can be controlled by nanostruc-
turing, although in a limited range.[77]

5. Harmonic Generation in Plasmonic
Nanostructures: Perturbative Picture

5.1. Second Harmonic Generation

The investigation of second harmonic generation from nanos-
tructures made from centrosymmetric metals[78] started with
studies of SHG from flat or curved surfaces[14,49,64,65] and
nanoparticles.[79,80] The derived theory of the process related to
the anharmonic response of the free electron gas based on the
hydrodynamic model revealed both surface and bulk contribu-
tions. In the following studies, a substantial attention was de-
voted to determining the relative contribution of these terms for
various nanostructures and finding the leading nonlinear mech-
anisms (Figure 4a).[22,48,66–70,81–83] The surface contribution de-
fined by χ

sur f
⊥⊥⊥ component is usually considered dominant, but

the particular balance between various nonlinear sources is ulti-
mately defined by the nanostructure geometry and material, as
well as the fundamental and SHG frequencies. A typical SHG
field map generated by a metallic nanowire with a square cross-
section is shown in Figure 4b. Comparison with the experimen-
tal results for spherical nanoparticles shown that a direct appli-
cation of nonlinear susceptibilities given by Eq. (39) with a = 1
produces only a rough fit to the observed data, but a good agree-
ment can be achieved adjusting the relative impact of the terms
in Eq. (39).[70] Generally, for spherical nanoparticles, SHG was
found to be a superposition of dipolar and quadrupolar contri-
butions (both originating from the retardation effects),[84–86] the
importance of higher-order multipoles for larger particles was
also predicted.[83] Following the experimental observations, ma-
jor mechanisms for the ordinary dipolar SHG contribution (with
an induced SHG dipole along the polarisation direction of the il-
luminating light), forbidden for an ideally symmetric structure
were proposed.[87,88] Particularly, non-centrosymmetric shapes of
the particles were invoked to explain the experimental results.[89]

Near-field SHG was studied with near-field excitation and detec-
tion, and was correlated with the surface topography.[90,91] For a
broad review of various experimental and theoretical studies of
SHG from metallic nanostructures see Ref. [78].
The strategy of getting a qualitative increase of SHG from cen-

trosymmetric metals by designing nanostructures of asymmetric
geometrical shapes was identified.[89,92] It was found that in order
tomake it efficient, the SHG engineering should rely on a certain
selection rule, expressed in a semi-empirical criterion as[93–97]

E2 ∝
∫∫

χ
(2),sur f
⊥⊥⊥

(
Emode
1,⊥

)2
Emode
2,⊥ dS, (44)

where E2 is the SHG field, χ (2),sur f
⊥⊥⊥ is the surface nonlinear sus-

ceptibility tensor component, considered to be the dominant

SHG source, Emode
1,⊥ and Emode

2,⊥ are the components of the fields
perpendicular to the metal-dielectric boundary for the modes
at the fundamental and SH frequencies, respectively, and the
integration is performed over the nanostructure surface. Par-
ticularly, this approach was used to optimise SHG from mul-
tiresonant coupled nanoantennas (Figure 4c).[95] Exploiting the
double-resonant condition (when the nanostructure has reso-
nances both at the fundamental and SHG frequencies) and es-
tablishing a proper overlap between the modes, the SHG from
a V-shape/rod structure was significantly enhanced (Figure 4d).
The SHG efficiency can be further increased by obtaining a
beneficial symmetry of the local fundamental field.[98] This “se-
lection” rule was also extended to the SHG studies from non-
centrosymmetric metasurfaces. Other, more exotic scenarios,
such as SHG frommetamaterials with backward phase-matching
were also considered.[99]

SHG can also be enhanced through the excitation ofmagnetic-
dipole resonances, as in, e.g., metamaterials based on the arrays
of split-ring resonators (SRRs).[100] SRRs have a magnetic-dipole
response leading to the resonant enhancement of local magnetic
fields, which results in a significant increase of the SHG po-
larisation related to the Lorenz nonlinear term in the hydrody-
namicmodel (−e · υ ×H term in Eq. (1)). Nevertheless, the SHG
signals from the SRRs for both magnetic and electric dipoles
have been measured with comparable values (Figure 4e).[101] The
time-domain numerical simulations based on the hydrodynamic
model show that in addition to the Lorenz term, the convective ac-
celeration term (m · υ · ∇υ) plays a significant role in this type of
nanostructures, accounting for 68% and 81% of the SHG power
in SRRs and complimentary SRRs, respectively.[101]

Finally, it is important to mention that SHG can be strongly
affected by the roughness. In the case of metallic films, this was
studied both experimentally and theoretically.[102] The main fea-
tures in the spatial distribution of SHG were discussed in terms
of the roughness-assisted SPP generation as well as the LSP
hot spots.[103,104] For metallic nanostructures, it was numerically
shown that small deviations from an ideal form due to asymme-
try related to limited fabrication capabilities or surface roughness
lead to significant changes in the radiated SHG, even if the lin-
ear response of the nanostructures is barely modified. From this
point of view, SHG provides a very sensitive tool for the optical
characterisation of plasmonic nano-objects and surfaces.[104–106]

Third harmonic generation (THG) from metallic nanostruc-
tures was initially investigated on the examples of flat sur-
faces and spherical nanoparticles.[107,108] The advantage of the
plasmonic approach was used to demonstrate THG enhanced
by the multipolar resonances either in individual metallic
nanostructures[109,110] or the resonant modes of 2D patterned
metal surfaces.[111–113] THG in metamaterials[22] and other en-
hancement mechanisms, such as those involving interband
transitions[114] and phase-matching in a plasmonic waveguide[115]

were also considered.

5.2. Nonlinear Coupling of Localised Plasmonic Resonances of a
Nanoparticle

The implementation of the perturbative hydrodynamic de-
scription allows the derivation of a fundamental criterion for
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Figure 4. a) Relative contribution of various nonlinear sources in a sub-nanometre layer below the metal surface. Reproduced with permission.[48]

Copyright 2012, the American Physical Society. b) Snapshot of the SH field generated by a 200× 200 nm2 metallic nanowire illuminated by a TM-polarised
20 fs pump pulse. Reproduced with permission.[22] Copyright 2010, the American Physical Society. c) Metallic nanostructure for double-resonant SHG
enhancement given by Eq. (44). d) SHG intensity map from an array of nanostructures shown in c): the rod length is varied from left to right with a 15
nm step from 80 nm to 155 nm, while the V-shaped half-arm length is varied from top to bottom with a 20 nm step from 140 nm to 240 nm. Reproduced
with permission.[95] Copyright 2015, Macmillan Publishers Limited. e) SEM images of split-ring resonators (left column) and complementary split
ring resonators (openings in a metal film, right column), along with their linear transmission (T , solid lines) and reflection (R, dashed lines) spectra
together with the values of the measured SHG signal; polarisations of the fundamental and SH waves are shown by the respective arrows). Adapted
with permission.[101] Copyright 2008, The Optical Society of America.
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efficient generation of localised second harmonic modes at the
nanoscale.[53] In the most general case, an arbitrarily shaped
metallic nanostructure is studied, and a plasmonic resonance
with a field distribution

E1 = A(ω)
1 (t) e−iωt e−γ

(ω)
1 tF(ω)1 (r) (45)

is considered to be excited at a fundamental frequency ω. Accord-
ing to Eqs. (32) and (33), the fundamental field induces second-
order nonlinear polarisation which excites localised SH modes

E2 =
∑
i

A(2ω)
i (t) e−2iωt e−γ

(2ω)
i tF(2ω)i (r) , (46)

where Ai (t) are the slowly varying (in comparison to ω) ampli-
tudes of the multipoles, Fi (r) and γi are their normalised spatial
mode distributions and damping coefficients, respectively. Sub-
stituting these expressions in Eq. (35) and using the SHG po-
larisation taken from Eqs. (31)–(33) for a lossless local case, one
obtains the following expression for the evolution of the i-th lo-
calised SHG mode:

∂A(2ω)
i (t)
∂t

= −i
e

mωε0

⎧⎪⎨
⎪⎩

∮
τ
(2ω)
i (Q)

[
σ
(ω)
1 (Q)

]2
dSQ∮

τ
(2ω)
i (Q) σ (2ω)

i (Q) dSQ

⎫⎪⎬
⎪⎭ e

(
γ
(2ω)
i −2γ (ω)1

)
t

× S
V

(
A(ω)
1

)2
, (47)

where σ and τ are the surface charge and surface dipole densities
of the modes, S is the surface area of the nanostructure and V is
its volume, the integration is performed over the nanostructure
surface. The highest efficiency of the excitation will occur for the
modes which maximise the overlap integral in the curly brackets
of Eq. (47). Moreover, the multiplication factor of S/V shows ex-
plicitly the proportionality of the nonlinear process efficiency to
the surface-area-to-volume ratio of the nanoparticle, emphasising
the advantage of nanoscale geometries. Note that the nonlinear
interaction here has a purely surface origin, supporting the ex-
perimental results reported in Ref. [87] and elsewhere.
The conversion efficiency of the nonlinear optical processes

is usually linked to the local field enhancement since nonlinear
polarisabilities are proportional to a certain power of the driving
field. Here, a similar link can be made: high surface charge and
dipole densities lead to high local electric fields. The “matching”
integral in Eq. (47) may reach high values if these surface func-
tions are spatially overlapped, meaning that the corresponding
local fields of first and second harmonics also have a significant
overlap. In particular, noncentrosymmetric particles can gener-
ate the second harmonic more efficiently. In our case, proper
matching of parameters can maximise the spatial overlap inte-
gral in Eq. (47), resulting in more efficient SHG. The importance
of matching was demonstrated on an example of localised mode
coupling in an elliptical metallic nanoparticle. Equation (47) pre-
dicts a vanishing excitation efficiency for a second-harmonic
dipole mode orthogonal to the fundamental dipole mode, since
the surface integral of τ

(2ω)
i (Q)[σ (ω)

1 (Q)]2 is zero (Figure 5). At
the same time, for the quadrupole mode this overlap is nonzero,
meaning that it may indeed be excited if its resonance frequency

Figure 5. Distribution of surface charge density (left column) and the re-
lated surface dipole density (right column) for different plasmonic reso-
nances of the spheroidal particle with the aspect ratio 1:1:1.6 for a,b) z-
polarised dipolar resonance, c,d) x-polarised dipolar resonance, and e,f) z-
polarised quadrupolar resonance. Reproduced with permission.[53] Copy-
right 2012, The American Physical Society.

is twice that of the fundamental dipolar mode, which can be ad-
justed varying the ellipsoid geometrical parameters.

5.3. SHG from Coupled Nanostructures

Assembling plasmonic nanostructures in arrays has led to
the development of artificial optical materials, metamaterials,
with engineered optical properties beyond those that could be
found in nature. In nonlinear optics, metamaterials present a
new paradigm for a material platform providing nonlinear ef-
fects orders of magnitude higher than in naturally occurring
media.[74,116,117] Here, however, it appears another level of com-
plexity. Both linear and nonlinear properties of suchmaterials are
defined not only by that of individual structures, ‘meta-atoms’,
forming the metamaterial, but also by coupling among them
(Figure 6a and b).[118] For example, for the SRR-based metamate-
rials, the highest effective second-order nonlinearity is observed
for an optimal separation between meta-atoms (Figure 6d) de-
termined by the interplay of the effect of the decrease in the
concentration of the meta-atoms for larger separations and the
increase of the resonance damping for smaller separations due
to the coupling effects among SRRs (Figure 6c). The above-
mentioned double-resonance condition can also be realised in
SRR-metamaterials, leading to the spectral dependence of SHG
for a rectangular array of SRRs (Figure 6e) predicted from the
hydrodynamic model (Figure 6g), which is in an excellent agree-
ment with the experimental results (Figure 6f).[118,119].
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Figure 6. a) Geometry and SEM images of SRR square arrays with varied periodicity (red arrow indicates the polarisation of the incident light). b) Linear
extinction spectra and c) linewidth of the fundamental resonance for different periodicity of the array. d) The dependence of the SHG intensity on the array
period (the excitation wavelength is near the fundamental resonance). Adapted with permission.[118] Copyright 2012, The American Physical Society. e)
SEM image of a rectangular SRR array. f,g) Dependence of the SHG intensity on the fundamental wavelength and the horizontal lattice constant: (f)
experimentally measured, (g) numerically calculated using the hydrodynamic model. Reproduced with permission.[119] Copyright 2016, Springer.

In the other type of metamaterials, hyperbolic plasmonic
metamaterials formed by arrays of vertically standing metallic
nanorods, coupling between the nanorods results in the for-
mation of waveguided modes which have significant influence
on the SHG spectrum and efficiency, being an analogue of
the double-resonant condition.[120] The hyperbolic nature of the
metamaterial provides an abundant spectrum of the waveguided
modes with multiple resonances in infrared and visible spectral
ranges. The sensitivity of the SHG response to the interaction be-
tween themeta-atoms can be used in SHG-based tomography for
the ultrasensitive determination of a nano-object position within
the metamaterial.[121]

6. Harmonic Generation from Metallic
Nanostructures in Non-perturbative
Hydrodynamic Description

6.1. SHG and THG from Metallic Nanostructures in
Non-perturbative Hydrodynamic Description

Although the perturbative models describe the dominating non-
linear processes in a very illustrative and physically clear way,

such analytic treatments are essentially restricted to studies of
a predefined nonlinear effect relying on a set of electromagnetic
modes in a limited number of geometries allowing analytical so-
lutions. Also, such approaches have an inherent restriction in
terms of the excitation powers for which the nonlinear varia-
tions can be considered as small perturbations. These conditions
significantly limit the capabilities to describe, frequently inter-
related, nonlinear processes from arbitrary geometries in strong
fields, which can be achieved in plasmonics.
A non-perturbative numerical model for the investigation

of nonlinear interactions of light with plasmonic nanostruc-
tures can be developed on the basis of a time-domain analy-
sis to address the nonlinear dynamics of free electrons with-
out any additional assumptions on the nature of the interac-
tion, which provides the opportunity to explore the interplay
between various nonlinear optical processes and a geometry
of the nanostructures.[101,122,123] Particularly, this approach gives
an opportunity to explore simultaneously both bulk and sur-
face contributions to nonlinear generation processes, as well
as the efficiency of sideband generation, involving interplay be-
tween nonlinear effects. The time-domain implementation al-
lows taking all these effects into account by coupling nonlinear
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Figure 7. Layout of the time-domain numerical simulations: a�50 fs vertically-polarised optical pulse with a central wavelength of 1500 nm is generated
at a domain source boundary and illuminates a nanorod or an Archimedean nanospiral from the left. Fieldmaps show the nomalised norm of the
local electric field. Geometrical parameters of the nanorod and nanospiral are also shown. Reproduced with permission.[123] Copyright 2016, Macmillan
Publishers Limited.

Figure 8. a) Nonlinear scattering spectra from an infinitely long Au cylinder of a 200 nm diameter simulated for a �50 fs Gaussian excitation pulse. b,c)
SHG and d, e) THG in (b,d) phenomenological and (c, e) microscopic hydrodynamic models. The colour scale is internal for each plot. Reproduced with
permission.[122] Copyright 2015, American Chemical Society.

hydrodynamic equations, which describe the behaviour of the
electron plasma, with the Maxwell’s equations to model the re-
sponse to electromagnetic fields. This enables obtaining a univer-
sal, self-consistent numerical solution, free from any approxima-
tions, allowing for the investigation of nonlinear optical interac-
tions with arbitrary spatially and temporally shaped optical pulses
and opening unique opportunities to approach the description of
realistic experimental scenarios. Furthermore, the developed for-
malism paves the way for the investigation of ultrafast dynamics
in mesoscopic and nanoscopic systems with properties defined
via microscopic degrees of freedom, which can be introduced in
the permittivity model.
We compare the existing models to the non-perturbative hy-

drodynamic approach in the canonical case of metallic nanorods
with a circular cross-section (Figures 7 and 8). The nonlinear scat-
tering spectra obtained with the full model obviously shows both
SH and TH contributions. Since the THG intensity grows with
the third power of the fundamental intensity and the SHG does
so with the second power of the fundamental intensity, the for-
mer shows a comparably faster growth with the excitation inten-
sity (Figure 8a). In the case of the nanorods much smaller than

the wavelength, the SHG intensity scales with the diameter as
∝ d4,[124] and provides 5 orders of magnitude difference in the
SHG intensities from the nanorods with diameters d = 200 nm
and d = 12 nm. Such drastic behaviour is the result of much
smaller dipolar and quadrupolar moments (both of which are
retardation-related) excited at the SH frequency for the smaller
nanorod.
The SHG emission diagram from the nanorod has two radi-

ation lobes pointing predominantly in the vertical (y-) direction
and showing the sum of dipole and quadrupole radiation. In the
chosen geometry, the main contribution to the SHG can be iden-
tified from the convective acceleration and the Lorenz force, hav-
ing comparable contributions, while the quantum pressure ef-
fects were not observed. The relative contribution of the different
terms may however differ depending on a particular geometry
of the nanostructure. To compare this radiation pattern to that
obtained from a frequency-domain phenomenological model,
Figure 8c shows the SH radiation pattern evaluated using the ap-
proximatemodel polarisation Psur f

2,⊥ = χ
(2), sur f
⊥⊥⊥ (E2,⊥)2.[89] This as-

sumes the perturbative regime with a nondepleted pump, relies
on a quasi-Fourier separation of the harmonics, and makes the
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explicit restrictive assumption that the interaction nature origi-
nates only from surface SH nonlinearity, particularly having only
the component perpendicular to the surface. One can see the
similarities of the phenomenological and non-perturbative mod-
els (cf. Figure 8b and c); however, the ratio between the dipolar
and quadrupolar contributions is heavily distorted in the phe-
nomenological model. Significant differences were also observed
in the near-field of the nanorod in the third harmonic, compared
with a phenomenological model based on bulk third-order sus-
ceptibility (Figure 8d and e). Since the latter assumes third-order
susceptibility to be homogeneous across the nanorod, the differ-
ences between models may be indicative of position-sensitive ef-
fective third-order susceptibility arising in the hydrodynamic de-
scription. While higher harmonic generation is also described by
the same non-perturbative hydrodynamic model, sufficient nu-
merical accuracy of the simulations is needed to observe their
presence.

6.2. Nonlocal and Resonantly-enhanced Nonlinear Phenomena

6.2.1. Coherent Nonlinear Effects and Nonlocalitty

Another very important feature of the hydrodynamic description
is its inherent ability to describe nonlocal electromagnetic ef-
fects. The hydrodynamic nonlocality is a typical example of strong
electron–electron interactions between quasi-free electrons of the
metal plasma and was proven to describe a variety of phenomena
governing the optical response of small plasmonic structures.[38]

(Please note that nonlocality discussed here has an electronic na-
ture and is different from the nonlocality due to spatial dispersion
in the effective permittivity of metamaterials,[125] which is impor-
tant for their Kerr-type nonlinear response discussed below). The
relative contribution of nonlocal effects to nonlinear optical prop-
erties depends on the characteristic sizes of nanostructures.
The effect of the quantum pressure can be seen from compari-

son of nonlinear response of plasmonic nanorods of different di-
ameters or Archimedean spiral shaped nanostructures (Figures
7 and 9a). Spirals have no symmetry of any kind and, hence,
are good candidates for nonlinear optical interactions as they
do not obey any geometrical selection rule.[126] Initially, we con-
sider a nonresonant excitation when the excitation frequency is
lower than the lowest plasmonic resonances of both nanorods
and nanospirals, in order to avoid the influence of the resonant
effects. The unique ability to either include or exclude the quan-
tum pressure term in the numerical model enables investigating
the impact of nonlocality on the nonlinear generation. For large
cylinders of 200 nm diameters (blue solid and dashed lines in
Figure 9b), the nonlinear scattering intensity (with linear scatter-
ing field obtained in the local approximation subtracted) shows a
clear signature of higher harmonics up to the 3rd order, though
no significant impact from nonlocality. For smaller cylinders of
12 nm in size, the role of the quantum pressure is more signifi-
cant. At the length scale of few nm (r = 6 nm in our case), which
is smaller than the mean free pass of electrons and becomes
comparable with the radius of nonlocality related to the electron
Fermi wavelength (�0.5 nm), the nonlocal response starts play-
ing an important role in the nonlinear scattering of the nanos-

tructures. While the structure of the local and nonlocal spec-
tra remains almost unchanged up to the 3rd harmonic (dashed
and solid green lines in Figure 9b, respectively), the intensity be-
tween integer harmonics in the nonlocal case is tremendously
enhanced compared with the local counterpart. The effect of non-
locality, however, ismuchmore pronounced in the case of the spi-
ral nanostructure (red lines in Figure 9b). For both nanospirals
and nanospheres, the enhancement rises linearly with the excita-
tion intensity and is probably related to the nonlocality-induced
change in the nanostructures’ linear response over the wide spec-
trum of the excitation pulse and frequency mixing of generated
harmonics.

6.2.2. Resonant Coherent Nonlinear Response

Resonant properties of plasmonic nanostructures give them a de-
cisive advantage for the generation of high intensity nonlinear
signals at the nanoscale. When the frequency of the excitation
light matches the frequency of the plasmonic mode, the latter is
resonantly excited, leading to pronounced enhancement of the lo-
cal fields. The enhancement of the associated nonlinear signal is
even more dramatic, since its intensity is proportional to higher
powers of the excitation intensity, given by the order of the in-
teraction. From this point of view, nanospirals present a very ro-
bust and efficient class of nanostructures, offering well-defined
narrow resonances (Figure 9a), which can be easily adjusted to a
given frequency.
In the case of the spiral with geometrical parameters consid-

ered above, the local fields are enhanced by factors of�35 and 50
for the first (1.2 eV) and second (2.9 eV) plasmonic resonances,
respectively (Figure 9a). Taking advantage of the flexibility of the
spiral geometry, the lowest plasmonic resonance of the nanospi-
ral was matched to the frequency of the pump (1550 nm or 0.83
eV) by increasing the angle of the spiral (and consequently its
length) to the value α = 1.03 · 3π slightly above 3π (Figure 9c
and d). Such optimised structure now provides the highest field
enhancement at the first resonance, rather than at the second
one.
As one can see by comparing the nonlinear responses of the

resonant spiral to the nonresonant spiral and the nanorod (d =
200 nm), the intensity of the SHG signal increased by >5 and
4 orders of magnitude, respectively, with a further several or-
ders of magnitude increase throughout the nonlinear supercon-
tinuum spectrum (Figure 9e). Comparing with the nonlinear
spectrum of a nanorod with a diameter equal to the nanospi-
ral arm width (d = 12 nm), the difference is even more strik-
ing with more than a 9 orders of magnitude increase of the
SHG intensity and a 8 to 3 orders of magnitude increase of
higher-harmonic intensities. Such striking difference highlights
the importance of the resonant effects for enhancing the non-
linear interactions as well as the importance of topology of the
nanostructure: the surface area and volume of the considered
nanospirals are different by only one order of magnitude: 10
and 20 times, respectively. The effective second-order nonlin-
ear susceptibility of a nanospiral can be estimated to be about
χ (2) = 600 pm V−1considering a spiral with the same geomet-
rical parameters made from a uniform material with χ (2) that
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Figure 9. a) Extinction cross-section spectra of an Archimedean nanospiral normalised to its overall geometrical cross-section modelled with linear
frequency-domain numerical simulations. The insets show electric field enhancement maps |E|/|E0| for the first two nanospiral resonances with respect
to the norm of the electric field of the incident wave. The white arrows show the direction of the local electric field. b) Nonlinear scattering spectra
of the nanospirals and nanorods of various geometrical parameters for a �50 fs Gaussian excitation pulse: solid and dashed lines correspond to the
hydrodynamic model with and without the quantum pressure term, respectively. c) Schematic of the nanospiral indicating the angle α, defining the
positions of the nanospiral resonances. d) Spectral dependences of the extinction cross-section of the nanospirals with α = 5/2 · π and α = 1.03 ·
3π normalised to their overall geometrical cross-section (s = 70 nm and w = 12 nm). e) Nonlinear scattering spectra of the nanospirals with α =
1.03 · 3π (having the resonance at the fundamental frequency) and α = 5/2 · π and the nanorods with d = 200 nm and d = 12 nm. Reproduced with
permission.[123] Copyright 2016, Macmillan Publishers Limited.

produces the same overall SHG flux. This effective susceptibil-
ity is 20 times higher than that of lithium niobate, a commonly-
used nonlinear material[127]. This value for the simulated nanos-
tructures in the absence of nonlocal effects is consistent with
the experimentally observed values of the effective second-order
susceptibility of metallic nanostructures of 10 pm V−1 [126] and
3.2 pm V−1 [128], taking into account the differences in the
local field enhancements and the surface areas. The SHG en-
hancement is robust with respect to geometrical scaling un-
der the resonant excitation of the fundamental nanospiral mode
which size-dependent spectral position can be matched to the
fundamental wavelength by varying α. The SHG intensity from
a twice larger nanospiral increases by the factor of �1.4 in ac-
cordance with a similar increase of the surface area. Also, it was
demonstrated that the nature of the fundamental resonance re-
mains the same in the most common experimental situation
when the light is incident from the top at a nanospiral of finite
thickness on a substrate. The resonances exhibit similar field
distributions and field enhancement values (this is not surpris-
ing for the nanoscale structure size with nonessential retardation
effects), which leads to the same nonlinear phenomena as dis-
cussed above.

7. Kerr-type Nonlinearity and Ultrafast Nonlinear
Plasmonics

7.1. Controlling Light with Light

In the presence of Kerr-nonlinearity (Eq. (25)), the transmission,
reflection or absorption of light at a given wavelength (signal
light) can be affected by the presence of strong control light,
which induces the nonlinear permittivity changes (the so-called

cross-modulation). The latter signal can be either free-space light
or any waveguided mode, including SPP. Alternatively, in self-
modulation realisation, light can experience self-induced nonlin-
ear propagation phenomena, if its intensity is strong enough to
induce nonlinear Kerr-effects. The latter canmanifest themselves
as nonlinear refraction, when refractive index of the material is
changed or nonlinear absorption or transmission if the imagi-
nary part of the refractive index is affected.
The Kerr nonlinearity of metals is very fast and, in different

regimes, its time response ranges from tens of fs to few ps, de-
pending onwhich electron plasma relaxation processes can be ac-
cessed with the particular nanostructure and excitation duration
and power.[129–131] The use of plasmonic structures for all-optical
modulation, switching and achieving optically tunable photonic
properties relies on enhancing Kerr-type nonlinearities of an ad-
jacent dielectric or a metal itself and utilising the modified re-
fractive index via changes in scattering associated with localised
surface plasmons or guiding properties of the structures relying
on surface plasmon polaritons.
Plasmonic-enhanced interaction of light with light can be

achieved with metal nanoparticles themselves[132–134] or bulk ma-
terials (e.g., nonlinear polymers) doped with them.[63,135,136] The
effective third-order susceptibility is determined by the field en-
hancement at the control light wavelength. The excitation of such
composites at the wavelength of the nanoparticle LSP resonance
(ωc = ωLSP) leads to an increase in the effective nonlinear sus-
ceptibility compared to an off-resonance excitation as described
in Section 3.2. Under the control illumination, the local changes
of the dielectric constant of the materials are induced resulting,
in turn, in the changes of the resonances of the metal nanostruc-
tures and, thus, signal light propagation. Under such conditions,
resonances either shift (phase modulation), if the real part of
the refractive index is affected, or the resonances are suppressed
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(absorption modulation), if the imaginary part is strongly mod-
ified. This approach can be used in both self-modulation mode,
when the propagation of light is influenced by the changes due
to its own intensity, or cross-modulation mode, when light at one
frequency (control) influences the propagation of the light at a
different frequency (signal).
Recently, specifically designed plasmonic nanoantenna reso-

nances have been used to control light scattering using the ITO
free-carrier nonlinearity in the picoseconds regime.[137] The Kerr-
type nonlinear change was used to realise ultrafast all-optical
modulation of the transmission through plasmonic nanostruc-
tured surfaces,[138] metasurfaces,[139] gratings,[140] nanoparticle
arrays,[141] SPP crystals[142,143], plasmonic cavities[144] and individ-
ual nanostructures.[134] Applications of plasmonically-enhanced
nonlinearities for pulse polarisation control[145] and shaping[146]

were also proposed.
Concurrently, if surface plasmon polaritons are chosen to be

signal carriers, the high sensitivity of their dispersion to the ge-
ometrical and material parameters of a structured surface where
they propagate[4] brings a viable solution to the problem of on
which all-optical control. In this scheme, minute changes in-
duced in the refractive index of a nonlinearmaterial placed on the
metal surface or in metal itself would significantly influence the
SPP propagation. In order to optically modulate and switch SPP
signals in a waveguiding geometry, two approaches are possible,
based on the control light induced changes of the real and/or
imaginary part of the permittivity of the materials. The latter has
been explored based on a control light induced absorptionmodu-
lation due to the changes of the imaginary part of the permittivity
of the plasmonic metal[142,147] as well the dielectric forming the
plasmonic waveguide.[148,149] The variation of the real part of the
metal influences the propagation of the SPPmodes via modifica-
tion of their phase velocity and thus, can be used in various phase-
sensitive configurations such as Mach-Zehnder interferometers
(MZI) or waveguide-ring resonators (WRR).[150–153] In plasmonic
crystals, the free-electron nonlinearity of Au has been used to con-
trol the SPP excitation with sub-ps response times determined by
the electron relaxation.[142,143]

Finally, not only linear, but also nonlinear properties of plas-
monic nanostructures can be controlled via Kerr nonlinearity in
metal on an ultra-fast timescale. The all-optical control of SHG
and THG from cut-disk-based metasurfaces was experimentally
realised showing significant variation of SHG intensity (up to
20%) with control light illumination (Figure 10).[154]

7.2. Nonlinear Plasmonic Metamaterials

Plasmonic metamaterials provide additional opportunities for
utilising nonlinear effects for all-optical switching, since not only
the plasmonic resonances of individual nanostructures but the
interaction between them in the metamaterial can be influenced.
Optical properties ofmetamaterials are determined by plasmonic
resonances of the constituents, e.g., SRRs or nanorods, as well
as the electromagnetic coupling between them.[155] The nonlin-
earity of plasmonic SRRs in the metamaterials has been used to
achieve very fast modulation times under 100 fs using the in-
trinsic nonlinearity of gold under two-photon excitation.[156] In

Figure 10. a) Sketch of the experimental setup for ultrafast optical mod-
ulation measurements of second- and third-harmonic generation from
cut-disk-based metasurfaces. Inset shows an SEM (scanning electron mi-
croscopy) image of the metasurface with the marked unit cell metal-
lic element. Second harmonic modulation signal from b) pump and c)
probe pulses. Reproduced with permission.[154] Copyright 2016, American
Chemical Society.

contrast to plasmonic crystals, metamaterials have characteris-
tic sizes of the elements and separations between them much
smaller than the operating wavelength, so that they can be de-
scribed by introducing effective medium parameters through the
averaging over many periods. While such effective medium ap-
proach describes the linear optical properties of metamaterials
(reflection, transmission and absorption) well, it should be ap-
plied to treatment of nonlinear optical properties with caution as
it does not take into account the local fields inside the metama-
terial composites which can vary significantly.[157] (For the same
reason, it also is not applicable for the description of the Pur-
cell effect for the emitters inside the metamaterial.[158,159]) The
extension of the effective medium model taking into account lo-
cal field variation via spatial-dispersion effects may alleviate this
problem in some cases, in particular in the case of hyperbolic
metamaterials.[158,160–162]

Plasmonic metamaterials also provide an opportunity to de-
velop a new approach to the enhancement of nonlinearity util-
ising the effects which arise in the epsilon-near-zero (ENZ)
regime,[160,163] when the real part of the effective medium per-
mittivity of the metamaterial is close to zero. In this case, non-
local spatial dispersion effects become important. In particular,
this happens in a metamaterial formed by an array of vertically
aligned metallic nanorods (Figure 11a) for the permittivity com-
ponent in the direction parallel to their axes. The nonlocal ef-
fects depend strongly on the losses in the system and can be sig-
nificantly modified by controlling loss in the Au nanorods. The
modulation is based on nonlinear response of Au under the in-
terband excitation, leading to the significant changes of Im(ε)
of Au, which results in very strong changes of the metamate-
rial transmission due to modification of the nonlocal response.
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Figure 11. a) Optical metamaterial formed by an array of gold nanorods
(diameter 20 nm, length 400 nm, an average inter-rod separation 70 nm).
b) Measured transient extinction spectra of the nanorod metamaterial for
various pump fluencies. Reproduced with permission.[163] Copyright 2011,
Macmillan Publishers Limited. c) Nonlinear absorption and d) nonlinear
refraction coefficients for the nanorod array metamaterial calculated us-
ing a finite element method for different angles of incidence and wave-
lengths. Reproduced with permission.[74] Copyright 2016, Macmillan Pub-
lishers Limited.

The transmission changes of up to 80% with a sub-picosecond
response time have been observed for nanorod-based metamate-
rials (Figure 11b). To achieve this performance in 100× 100 nm2

devices, 10 fJ pulses are sufficient.[163] Such metamaterials can
also be integrated in nanophotonic waveguides, e.g., Si waveg-
uides, to provide very efficient all-optical modulation and switch-
ing of the guided signals using all-optically controlled coupling
between waveguide and metamaterial modes.[164] The operation
performance of such metamaterial-based modulator is compara-
ble with other integrated all-optical counterparts.[165]

The strong Kerr nonlinearity of metals is significantly re-
stricted to the spectral range of the interband electronic tran-
sitions where efficient excitation of electrons to the conduction
band takes place, leading to the strongest nonlinear response.
This nonlinearity becomes weaker at frequencies away from the
interband absorption, limiting its usefulness to the (near) ul-
traviolet spectral range of the control light wavelength. On the
other hand, the strong absorption near the interband resonance,
in many cases, prohibits useful applications when the signal
light, which may be controlled by this nonlinearity, overlaps
with this spectral range. If, however, Au nanostructures form a
hyperbolic-type metamaterial, the nonlinearity near the effective
plasma frequency[166] of the metamaterial where the ENZ-regime
is achieved, is strongly enhanced.[163] Not only the enhanced non-
linear response but the sign of the nonlinearity at the required
wavelength can be engineered by changing the geometrical pa-
rameters of the nanorod metamaterial.[74]

The z-scan measurements allow the direct determination of
the nonlinear refraction, γ , and nonlinear absorption, β, coef-
ficients related to an intensity-dependent, complex-valued effec-
tive refractive index of the metamaterial ñ = n+ iα/(2k0), k0 be-
ing the light wave vector and n(I) = n0 + γ I and α(I) = α0 + β I ,
where n0 and α0 are the linear refractive index and the absorption,
respectively, and I is the intensity of the incident light. As a con-

sequence of the metamaterial’s anisotropy, the retrieved effective
values of nonlinear refraction γ (θ ) and nonlinear absorption β(θ )
coefficients for a specific angle of incidence θi that can be related
to the components of the effective third-order nonlinearity tensor
of the anisotropic metamaterial as[74]

εe f f (θi ) ≈ ε0e f f (θi )+ 3εssin2θi

[
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is the angle-

dependent but nonresonant term, ε0xx and ε0zz are the components
of an effective linear permittivity tensor of the metamaterial,
χ
(3)
xxzz and χ

(3)
zzzz are the components of a third-order nonlinear

susceptibility tensor, dominant for the transverse magnetic po-
larized (TM) light, εs is the permittivity of the medium adjacent
to the metamaterial from the side of the incident light, and |E0|
is the incident electric field amplitude. One can see that near the
effective plasma frequency when ε0zz is close to zero, the effective
nonlinearity is greatly enhanced.
The largest nonlinearity was experimentallymeasured in these

conditions corresponds to γ ≈ −2.4× 10−11 cm2 W−1 and β ≈
−9967 cm GW−1. At the same wavelengths, |γ | and |β| of the
nanorodmetamaterial are approximately 20 and 100 times larger
than those measured for a smooth Au film.[57] Surprisingly, the
maximum value obtained for γ and β for the metamaterial away
from Au interband transitions is larger than the maximum val-
ues measured for a smooth gold film close to the interband tran-
sition where they usually are the highest. While in the studied
range of frequencies, the nonlinearity of smooth Au is always
positive (induced absorption and focusing nonlinearity), the Au
nanorod metamaterial can provide either induced absorption,
transparency, focusing or defocusing nonlinearity, depending on
the combination of light wavelength and angle of incidence (Fig-
ure 11c and d). Thus, not only the strength but also the sign of
the nonlinearity can be designed with plasmonic metamaterials.
Thewavelength at which the strongest nonlinearity is observed

can be engineered and pre-defined at the fabrication stage by set-
ting the proper geometrical structure with the same constituent
materials. Therefore, an artificial optical material with a strong
nonlinear response can be realised at the wavelengths where the
constituent materials have negligible nonlinearity. As an exam-
ple, in Ref. [74] a nonlinear Au nanorod metamaterial was de-
signed for the telecommunication spectral range where Au has a
negligible nonlinear response.
It should be noted that the condition on the nonlinearity en-

hancement in the ENZ regime similar to that given by Eq. (48)
is also valid for conventional plasmonic materials. Very strong
nonlinearity was observed for thin ITO films at the plasma fre-
quency in the telecommunication spectral range[167] as well as us-
ing semiconductor plasmonic nanocrystals.[168]

8. Nonlinear Surface Plasmon Polaritons

Ultrafast plasmonic Kerr nonlinearity can substantially influence
the propagation of the SPP modes at the metal/dielectric inter-
face, particularly in the case of dielectrics lacking a strong non-
linear response.[169] For example, it was shown both theoretically
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and experimentally that in this case SPPs experience prominent
self-induced absorption.[170] Nonlinearity may lead to completely
unexpected behaviour of SPPs. In a linear case, when consider-
ing nonmagnetic media, SPPs are always TM-polarised surface
waves.However, if the Kerr-type nonlinearity is introduced, trans-
verse electric (TE) -polarised nonlinear surface waves may exist
at the interface between a nonlinear dielectric and a linear metal
or a linear dielectric and a nonlinear metal.[8] The former case
has more stringent requirements on nonlinearity of the dielec-
tric (it should be defocusing and stronger than the nonlinearity
ofmetal), while the latter case can always be achieved considering
free-carrier nonlinearity of metals under strong enough intensity
of the exciting light. Propagation of high-intensity SPPs at the in-
terfaces bounded by a nonlinear medium also results in other
interesting phenomena such as self-phase modulation[171] and
soliton-like behaviour of plasmonic waves. In this section, sev-
eral nonlinear phenomena influencing the propagation of SPPs
with the nonlinearity stemming either from the metal or the di-
electric components of a plasmonic waveguide will be discussed.

8.1. Nonlinear SPP Modes due to Ponderomotive Nonlinearity

General nonlinear phenomena in planar SPP waveguides were
extensively studied and various combinations of the nonlinear-
ities were considered.[172] The propagation of SPP modes is af-
fected by the third-order nonlinearity even in the most basic SPP
supporting structure: a singlemetal–dielectric interface.[50] At the
wavelengths longer than the inter-band transitions range, the
third-order nonlinearity can be attributed to the previously dis-
cussed ponderomotive forces. This dynamic phenomenon, hav-
ing a direct counterpart in classical plasmas, leads to repelling
of electrons from the region of the high field intensity. As the
result, the corresponding nonlinear effect is related to electron
depletion in the high-intensity regions that are located just at the
metal-air boundary. The linear effective index of the SPP mode
is given by

√
(εm + εd )/εmεd , where εm and εd are the permittivi-

ties of the metal and dielectric media, respectively. As a result of
the carriers’ depletion next to the guiding boundary, the negative
metal permittivity near the interface becomes less negative, and
may approach a critical value of εm = −εd . At this condition, the
SPP mode approaches its cut-off. For light intensity correspond-
ing to this critical value, the intensity-induced modal reshaping
results in equal, but opposite, power flows in the metal and the
dielectric. The corresponding SPP intensity-dependent nonlinear
dispersion relations show the intensity dependent cut-off wave-
lengths for the nonlinear SPP modes (Figure 12).

8.2. Cascaded Plasmon-solitons due to Second-order
Nonlinearity

Second-order nonlinearity can lead to spatial soliton wave for-
mation via the effect of second-harmonic generation, as was
theoretically predicted[173] and experimentally demonstrated in,
e.g., potassium titanyl phosphate (KTP) crystals[174] and planar
LiNbO3 waveguides.[175] The principle behind such spatial soli-
tons is the collinear propagation of two beams, one at fundamen-

Figure 12. Dispersion of a single-surface nonlinear SPP on air–gold in-
terface for different interface electric field amplitudes: (dashed blue line)
12 GV/m, (red line with circles) 11.5 GV/m, (black line with crosses)
11 GV/m, (green line with diamonds) 10.5 GV/m, (brown line with trian-
gles) 10 GV/m, (purple line with stars) 9.5 GV/m. The inset shows the
nonlinear effective index normalised by the linear one as a function of
the wavelength and the field amplitude. Reproduced with permission.[50]

Copyright 2010, The Optical Society of America.

tal and another at the second-harmonic frequency. These beams
exchange their energies via the second-order polarisability, which
coined the term ‘cascaded χ (2) solitons’. Such an exchange pro-
vides the maximum phase delay at the region of high intensity,
resulting in self-focusing. This nonlinear phenomenon provides
many opportunities for applications and fundamental studies of
solitonic effects.[176]

Here, following Ref. [177], we illustrate the concept of cascaded
χ (2) SPPs propagating at the interface between a linear dielectric
and ametal with the nonlinearity described by the hydrodynamic
model. Two co-propagating SPP beams, one at ω, another at 2ω,
are considered to be nonlinearly coupled through the nonlinear
polarisation of the metal.
SPP modes are strongly confined to the metal–dielectric inter-

face where the nonlinear interactions take place. The mismatch
between the effective refractive indices of the fundamental and
the second-harmonic beams, reflecting the dispersion of the SPP
waves and determining the essential phase relations between the
waves, should be taken into account. The finite propagation dis-
tance of SPPs, which is determined by Ohmic losses in the metal
plays a significant role in the formation of this type of solitons.
The SPP beams at the fundamental and second-harmonic fre-

quencies propagate collinearly along the z-axis with transverse
field profiles described byGaussian distributions. Comparing the
evolution of the SPP profiles during the propagation in linear
and nonlinear regimes, the formation of the solitons can be ob-
served (Figure 13). The intensity distributions |E1,2x|2 obtained in
the linear (uncoupled) regime show typical diffraction-governed
propagation for both fundamental and second-harmonic SPP
beams (Figure 13a and d). When the SPP intensity is gradually
increased so that the nonlinear interaction is introduced, the in-
tensity distributions become deviating from that in the linear
propagation regime. The observed intensity fringes are defined
by the mismatch between the SPP effective indices at the two
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Figure 13. a)–f) Evolution of co-propagating fundamental and SH SPP beams in the non-phase-matched case 2k1 − k2 � 0 (k1 and k2 are the
wavenumbers of the fundamental and second-harmonic SPP beams, respectively). Linear propagation of (a) the fundamental and (d) the second-
harmonic SPP beams in an effective 2D medium (mimicking Au/silica interface), the effective indices of the waves are ne f f

1 = 1.457 + 3.25 × 10−4i and

ne f f
2 = 1.514 + 7.5 × 10−4i at 1500 and 750 nm wavelengths, respectively. Nonlinear propagation and self-focusing of (b, c) the fundamental and (e, f)

the second-harmonic SPP beams for different light intensities corresponding to (b, e) χ (2)E 1 = 0.02 and (c, g) χ (2)E 1 = 0.05 nonlinearities. The initial
amplitudes of both beams are equal (E1 = E 2) and the beam half-widths are w1,2 = 2.5λ1,2. g)−i) Corresponding fieldmaps for the phase-matched
case with Re(ne f f

1 ) = Re(ne f f
2 ) = 1.583. Reproduced with permission.[177] Copyright 2013, Institute of Physics.

frequencies. At the same time, the energy exchange between the
beams can be seen: the maximum intensity of one beam corre-
sponds to the minimum intensity of the other (Figure 13c and f).
Furthermore, the effect of narrowing of the SPP beams, driven
by the nonlinearity, can be seen in the decrease in the average
beam width at both the fundamental frequency and the second-
harmonic frequency. The largest modulation of the intensity pro-
files is in the centres of the beams, where intensities are the high-
est and the nonlinear coupling is the strongest.
The efficiency of this soliton formation process can be in-

creased if the phase matching between the fundamental and
second-harmonic SPPs is achieved. This can be introduced us-
ing as the SPP-supporting interface a dielectric medium with
anomalous dispersion to compensate for the SPP dispersion:
Re(ne f f1 ) = Re(ne f f2 ).[1] The evolution of the SPP beams in both
linear and nonlinear regimes in this case shows the evident trans-
formation of the SPP modes into highly localised nondiffracting
solitons, allowing to achieve SPP beams with a narrower spa-
tial profile than in the absence of the phase matching. SPP self-
focusing effect occurring near the excitation boundary was also
observed (Figure 13i and l).

9. Conclusion

Various nanoplasmonic platforms based on planar and struc-
tured plasmonic-dielectric interfaces, plasmonic nanoparticles
and their composites, as well as plasmonic metamaterials, facili-

tate enhancement and engineering of many nonlinear phenom-
ena. Both spectrum and value of effective nonlinear susceptibil-
ities can be manipulated in plasmonic environment. Nonlinear
response can be introduced either by adjacent nonlinear optical
materials in hybrid plasmonic structures or solely aided by in-
herent nonlinearities in plasmonic nanostructures themselves.
In all cases, plasmonic structures provide strong field enhance-
ment near the interfaces as well as flexible control over modal
dispersions and strong sensitivity to the refractive index changes.
All this enables plasmonic nanostructures to achieve both coher-
ent and Kerr-type nonlinear responses on deep subwavelength
scales, where majority of conventional dielectric components fail
due to natural limitations, set by the diffraction limit and low
values of nonlinearities requiring either long propagation range
or very high light intensities. Flexible near-field manipulation in
the vicinity of the nanostructures allows making use of spatially
varying vectorial electromagnetic fields, and, thus, provides an
opportunity to access all components of the nonlinear suscepti-
bility tensor.
Another very important advantage of materials with free elec-

trons in the field of nonlinear optics is their inherent and ultra-
fast nonlinear response due to the complex dynamics of elec-
trons in strong electromagnetic fields. The most widely used
models for describing this nontrivial electron dynamics in nanos-
tructures are the hydrodynamic model, describing a free elec-
tron plasma with collective interactions between electrons, and
the two-temperaturemodel, taking into account non-equilibrium
statistics of the carriers under optical excitation. Bothmodels and
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the respective nonlinear properties can be affected by the nanos-
tructured geometry, resulting for truly nanoscale objects in the
importance of nonlocal electromagnetic effects, which become
significant at the length scale achievable with modern nanofab-
rication techniques. These nonlocal effects open a new route for
engineering the nonlinear response.
In this review, we gave a brief general overview of the field

of nonlinear plasmonics in a full hydrodynamic description. Af-
ter discussing the origins of various nonlinear phenomena, plas-
monic approaches for tailoring and enhancing nonlinearity were
outlined, each time giving an illustration of the related vivid
physical phenomena. This included coherent nonlinear effects,
such as harmonic generation at the nanoscale and nonlinear cou-
pling of plasmonic resonances (an analogue of phase-matching at
themacroscale). A hydrodynamic time-domain numerical model
was reviewed for coherent interactions of free-carrier plasma
in a nanostructure of an arbitrary shape with an optical pulse
of an arbitrary temporal profile, without any approximations.
The approach allows to address the phenomena of multiple and
resonantly-enhanced harmonic generation as well as reveals the
interplay between the nonlinear effects and a topology of the
nanostructure. Ultrafast Kerr-type nonlinearity due to the satu-
ration of interband transitions and heating of a free-electron gas
in the conduction band was overviewed with a particular example
of engineering magnitude, spectrum and sign of the nonlinear-
ity using a plasmonic nanorodmetamaterial. At a designed wave-
length, the metamaterial can provide either induced absorption
or transparency and focusing or defocusing nonlinearity, depend-
ing on its geometrical parameters, opening up opportunities for
custom-engineered nonlinear materials for switching and mod-
ulation of light with light. Nonlinear surface waves on the inter-
faces between linear and nonlinear media, including plasmon
solitons and cascaded SPP solitons, were also briefly overviewed.
The use of plasmonic nanostructures in nonlinear optics has

allowed to move nonlinear optical processes in a realm of inte-
grated photonics as well as to demonstrate low-light intensity
nonlinear effects for free-standing optical applications. Switch-
ing, controlling, routing and manipulating of light with light
is a difficult but rewarding problem with the applications rang-
ing from on-chip optical data processing and routing to nonlin-
ear optical components for optical communication networks and
laser applications. Plasmonics has helped to demonstrate many
nonlinear optical effects on the subwavelength scales as well as
in macroscopic implementations with much reduced required
powers of light. Until recently, nonlinear plasmonic effects have
mainly been demonstrated with conventional plasmonic mate-
rials, such as Au, Ag and Al. Unconventional phase changing
plasmonic materials, such as Ga[147,178,179] as well as ferromag-
netic materials (Ni, Co) with a plasmonic response in visible and
ultraviolet spectral regions were also considered.[180–184] The de-
velopment of a new type of plasmonic semiconductors based on
nitrites and oxides, such as TiN, ITO, doped ZnO, as well as two-
dimensional materials using plasmonic properties of graphene
and transition metal dichalcogenides, including topological in-
sulators and “Dirac-cone” materials, and plasmonic quantum
dots has already started to provide a new push in nonlinear
plasmonics.[185–194] The use of new features that become acces-
sible with the new materials as well as possible to engineer via
appropriate nanostructuring in compositemetamaterial arrange-

ments, e.g., epsilon-near-zero behaviour in technologically rele-
vant spectral ranges, additionally enhances practical applications
of nonlinear plasmonic components. Modern fabrication tech-
nologies have permitted the achievement of fine nanoscale con-
trol over the plasmonic geometries which allowed flexible tuning
of their resonances to succeed in the design of high effective non-
linearities at the desired wavelengths and with short response
times. We believe that the future of nonlinear optics in its var-
ious facets of free-space, integrated or quantum nanophotonic
technologies will be shaped by nonlinear plasmonics.
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