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Abstract 

The forthcoming era of massive drone delivery deployment in urban environments raises a need to develop 

reliable control and monitoring systems. While active solutions, i.e., wireless sharing of a real-time location 

between air traffic participants and control units, are of use, developing additional security layers is 

appealing. Among various surveillance systems, radars offer distinct advantages by operating effectively in 

harsh weather conditions and providing high-resolution reliable detection over extended ranges. However, 

contrary to traditional airborne targets, small drones and copters pose a significant problem for radar 

systems due to their relatively small radar cross-sections. Here, we propose an efficient approach to label 

drones by attaching passive resonant scatterers to their rotor blades. While blades themselves generate 

micro-Doppler rotor-specific signatures, those are typically hard to capture at large distances owing to small 

signal-to-noise ratios in radar echoes. Furthermore, drones from the same vendor are indistinguishable by 

their micro-Doppler signatures. Here we demonstrate that equipping the blades with multiple resonant 

scatterers not only extends the drone detection range but also assigns it a unique micro-Doppler encoded 

identifier. By extrapolating the results of our laboratory and outdoor experiments to real high-grade radar 

surveillance systems, we estimate that the clear-sky identification range for a small drone is approximately 

3-5 kilometers, whereas it would be barely detectable at 1000 meters if not labeled. This performance places 

the proposed passive system on par with its active counterparts, offering the clear benefits of reliability and 

resistance to jamming. 
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1. Introduction 
 
Drones and unmanned aerial vehicles (UAVs) become a resource for a wide range of civil applications, 

including, but not limited to infrastructure monitoring, airborne remote sensing, logistics, rescue operations, 

and many others [1]–[11]. Advanced navigation systems, high level of automatization, low cost, extended 

autonomous operation, and many other advantages promote extensive use of UAVs in the very near future 

and their impact will keep growing dramatically [12]–[19]. Nowadays, most flights conducted by UAVs 

occur in uncontrolled or segregated airspaces to eliminate danger. Nevertheless, small UAVs pose 

significant security issues, as has been proven in many unfortunate cases worldwide and the number of 

safety issues will continue to grow. Due to their low cost and unlicensed accessibility, small drones can be 

used by unauthorized users to carry dangerous items, spot on classified sites, interfere with air traffic, and 

for other undesired purposes. Apart from clear homeland security applications, it is evident that small drone 

traffic in an urban environment will grow exponentially in the near future, raising a clear need to deploy 

reliable monitoring systems [20]–[22]. 

Among the range of existent monitoring systems, the main approaches focus on camera, acoustic, and 

radar detection techniques, each having its own pros and cons [23]–[26]. While high-resolution imaging 

can allow for highly accurate target recognition, it heavily relies on a line of sight, ambient illumination, 

and intensive signal processing to name the key constraints. Acoustic approaches are rather range-limited 

and susceptible to environmental noises [27], [28]. Radar technologies have already proven themselves to 

operate in harsh conditions, providing real-time reliable detection of airborne targets [29]–[31]. This is the 

reason why those systems keep developing and are actively deployed on many different platforms, 

including automotive. 

Small UAVs are a rather new class of airborne targets, which started to challenge radar technologies 

quite recently. Drones have enormously small radar cross-sections (RCS), hardly distinguishable from 

clutter. For example, birds with 10cm2 RCS at the X-band generate comparable radar signatures. In this 

case, an additional target classification must be performed. Micro-Doppler analysis, differentiating 

signatures of flapping wings and rotating blades comes at a rescue, though demanding a more accurate 

target investigation (e.g., more time on target and higher signal-to-noise ratio (SNR) in detection) [32]–

[35].  Furthermore, another critical aspect is a low flight altitude, which puts clutter-filtering aspects at the 

cornerstone, as ground reflection and multi-path interference start playing key roles. State-of-the-art radar 

systems can detect small drones (e.g., DJI Mavic2) from kilometer-scale ranges in clear sky conditions and 

classify them with their micro-Doppler information from even shorter distances [36]. Considering civil 

applications, high-grade systems with KW-scale peak radiation power cannot be deployed in urban 

environments owing to a possible safety threat thus motivating to develop alternative approaches.   
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An effective way to enhance the radar visibility of small drones is to increase their RCS, such as by 

equipping them with corner reflectors. However, being also aerodynamically questionable, this approach is 

still insufficient in the case of heavy clutter. For example, a building behind a drone will always reflect 

more signal compared to the reflector. Considering the meter-scale range resolution (e.g., a typical 100MHz 

bandwidth at X-band) and proximity between targets, straightforward RCS enhancement does not provide 

a reliable solution. Furthermore, this approach does not grant a drone-specific identification number. On 

the contrary, given that spectral target-specific information is created, efficient clutter filtering can be 

obtained. The most common approach of separating a moving target from a static clutter is applying a 

Doppler filter or a moving target indicator, e.g., [37]. In both cases, mechanical motion is the key property, 

granting the capability to perform a long-range detection. Here, we propose to harness the inherent 

mechanical motion of the drone blades to implement an encoded transponder.  

Apart from a conventional Doppler shift, a flying drone imprints special spectral features on radar 

returns. Those features are called micro-Dopler signatures of rotating blades. In general, micro-Doppler 

analysis is a technique used to extract additional information from radar returns by examining the Doppler 

shifts of different parts or components of a target's motion [38]–[40]. It is particularly useful for detecting 

and characterizing the movements of individual features or subcomponents within a larger target and is 

used across many disciplines [41]–[47]. Micro-Doppler analysis is heavily used nowadays for target 

classification [48]–[54]. However, in the case of small drones, classification, relying on micro-Doppler 

signatures of blades, required a significant time on target and relatively high SNR in detection. Our 

objective here is to get use of the fast-moving mechanical parts and dramatically enhance their micro-

Doppler signatures by turning weakly scattering plastic blades into resonant scatterers, matched to an 

investigating radar bandwidth. For this purpose, we develop lightweight low-profile stickers and attach 

them directly to blades. As will be shown hereinafter, combinations of stickers at different quantities and 

places allow for coding information about a drone.  

The manuscript is organized as follows: electromagnetic design and characterization of stickers come 

first and then followed by a set of indoor and outdoor experiments, to reveal the impact of stickers on the 

micro-Doppler signatures. Admitting the complexity of the observed signals, learning algorithms for target 

classification are applied, demonstrating long-range tagging capabilities. Extrapolation of the range, from 

which targets can be efficiently classified, is made with radar classification and probabilistic assessment.   
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2. Results 
2.1. Electromagnetic characterization of stickers 
 

The design of the stickers is made to cooperate with an S-band radar, operating at 2-4GHz with a typical 

100-200MHz bandwidth [36]. This band, being a compromise between the resolution and susceptibility to 

weather conditions, is a typical choice for airborne target surveillance and monitoring. As proof of concept, 

DJI Mavic2 drone was chosen for labelling. Worth noting that this item is a very difficult target for detection 

owing to its inherently small RCS.   

The first set of studies concentrates on in-door analysis, performed in an anechoic chamber (Fig. 1(a)). The 

plastic blade of the drone is only 55mm long and, thus, can barely accommodate a resonant half-wavelength 

dipole (5cm at 3GHz) without meandering. Figure 1(b) demonstrates the photograph of the labelled drone, 

where Figs. 1(c) and (d) elaborate on the details. The meandered structure was designed to resonate at 

3.35GHz (central frequency within the radar bandwidth). CST Microwave Studio was used for the 

modelling and simulations. Since the meandered dipole is a resonant structure, it is susceptible to the nearby 

dielectrics, specifically blades. To capture those effects, the optimization was done including the plastic 

blade (Fig. 1(c)). The dimensions and material features of the blade were taken from [55]–[57] - the 

permittivity ε = 2.8, and dielectric loss tan(δ) = 0.0054. Following the design, the stickers were 

manufactured by cutting the structure from a thin sticky foil sheet using an LPKF ProtoMat E33 milling 

and drilling machine. The RCS of the blade with the sticker was measured in an anechoic chamber. The 

results appear in Fig 1(e) and are in perfect correspondence to the modelling, demonstrating the pronounced 

peak at 3.35GHz.  

At the next stage, the blade was placed back on the motor shaft of the drone. To recap on the operation 

principle, the micro-Doppler signature is the result of the time-dependent polarization mismatch between 

the dipole and the incident field polarization, which leads to the amplitude modulation of the scattered 

signal. Figures 1(g) and (h) demonstrate the concept, where the blade with the sticker is oriented differently 

with respect to the incident field polarization. The maximal scattering is observed in Fig. 1(g), while it is 

minimized in the case of (h). To prove this statement experimentally, the RCS of the entire drone, labelled 

with a single sticker, was acquired for 2 orthogonal orientations. The relevant value in this case is the 

differential RCS (the difference in scattering, which comes from the blade’s orientation). The differential 

RCS spectrum appears in Fig. 1(f) and demonstrates a strong peak at exactly the same frequency, where the 

sticker has the resonance. This observation demonstrates that (i) the entire drone’s body has a very small 

impact on the dipole response and (ii) the differential RCS value is 10-3m2, which is comparable to the RCS 

of the entire structure. It suggests that if the target’s Doppler is visible from more than 5 km, it can be 

classified with the aid of the sticker-controlled micro-Doppler from the same distance. This very strong 
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statement, even though it comes from approximations, motivates further development of the proposed 

technology.  

 
 

Figure 1. (a) Experimental setup - hovering drone in an anechoic chamber. CW radar is realized with a 

PNA and Tx/Rx antenna. (b)  Photograph of the labelled drone, demonstrating the coding principle. Each 

blade has a serial number from 1 to 8, which is the basis for an 8-bit binary number. Each bit is either 0 (no 

sticker on the blade) or 1 (if the sticker is present). The code '11001010' is shown as an example. (c) CST 

layout of the meandered dipole on a blade. (d) Geometry of the optimized meander. (e) RCS spectrum of a 

sticker on the blade – experiment (blue dashed curve) and the numerical fit (black solid curve). (f) 

Differential RCS of the whole drone, with a single labelled blade, as appears in (g) and (h). Differential 

RCS is measured as a difference between the RCSs at (g) position subtracting (h) position of the rotor.  

2.2. Micro-Doppler Coding  
 

The setup, photographed in Fig. 1(a), was exploited to assess the micro-Doppler labelling capabilities and 

learn different sticker configurations (codes) at high SNR conditions prior to conducting outdoor 
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experiments. The experimental setup consists of the PNA-based continuous wave (CW) radar and the 

hovering drone in front of the horizontally polarized radar’s antenna, positioned at a 2-meter distance. The 

radar has a superior Doppler resolution, which is obtained by processing time traces of complex S11 

parameters, acquired by the PNA. The measurement was fully controlled with a PC, making the 

experimental data reproducible. Each experiment contained 10 seconds on target and 50001 measurement 

points within this time frame were acquired. Each point is the complex-valued reflection coefficient (S11, 

peak-to-peak voltage) within a 100KHz filter around the carrier frequency. Considering the average angular 

velocity of the blades, the difference between adjacent measurements in time corresponds to 10 degrees of 

the blade turn. Those parameters were found sufficient for performing the subsequent signal processing.  

As the first set of assessments, '10000000' and '11000000' codes were assessed. Figures 2 (a) and (b) 

demonstrate the spectrograms with an overlap between adjoining segments of 50% and a time window of 

0.33 s, while Fig. 2(c) is the baseband spectrum of the radar echo, post-processed for the entire 10-second 

observation time. For the one-blade labelled case ('10000000' code), the baseband spectrum demonstrates 

a micro-Doppler comb, with equidistant ~160 Hz steps, which corresponds to the angular velocity of the 

rotor. The same behavior is seen in the spectrogram alongside a minor time evolution of the micro-Doppler 

spectrum. This behavior is expected as the drone hovers at the same place, nevertheless fluctuating around 

the stable point. When two blades of the same rotor are labeled ('11000000' code), the odd multiples of 

160Hz become less visible (almost vanish) in the baseband spectrum. This is a rather expected result, as the 

blade becomes symmetric (has a radial symmetry with respect to the center of rotation). Thus, even 

harmonics predominate. This example provides an intuition on the coding mechanisms, which link the 

sticker configuration to the baseband micro-Doppler spectrum. For the sake of comparison, Figs. 2 (d, e, 

and f) demonstrate the same scenario for the outdoor experiment. While the outdoor scheme will be 

discussed in detail hereinafter, here it can be clearly seen that the spectrogram structure remains the same 

given the lines become wider. This phenomenon is solely related to the hovering stability. Outdoors, the 

drone has to contend with wind gusts that affect the rotor velocity, causing additional fluctuations to 

maintain the drone's position and rotational velocities.  
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Figure 2. Micro-Doppler baseband spectra for a drone with one and two stickers on the same rotor. The 

corresponding codes are '10000000' and '11000000'. Indoor experiments – (a), (b), and (c). Outdoor 

experiments - (d), (e), and (f). Spectrograms – an overlap between adjoining segments of 50% and a time 

window of 0.33 sec. (c) and (f) are baseband micro-Doppler combs, obtained from 10-second time-on-

target observation.  

 

 

To reveal the significant differences between the codes, many other configurations were investigated. 

Several examples appear in Fig. 3, demonstrating both spectrograms and the micro-Doppler combs. Data 

acquisition was made under the same conditions as previously. The main result here is the complexity of 

the obtained signals, which even though can be visually distinguished from each other. However, the simple 

distinction between odd and even harmonics is not possible anymore. This complexity is the basis for 

machine learning algorithms, which will be investigated hereinafter on pathways to grant capabilities of 

remote labeling.  
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Figure 3. Micro-Doppler spectrograms and baseband micro-Dopler combs for several codes – indoor and 

outdoor scenarios. Details are in panels. Settings are the same as for Fig. 2.  

 
2.3. Outdoor assessment of a moving drone  

 
While hovering drone scenario allows obtaining high-SNR micro-Doppler signals and is very convenient 

for basic assessments, real flight conditions are quite different from this arrangement. To assess the impact 

of motion, albeit in a simplified arrangement, the drone was flown towards the radar antenna outdoors. 

Figure 4(a) is the photograph of the experiment, where '10000000' was used. Figure 4(b) demonstrates the 

spectrogram, obtained by postposing the experimental signal. 10 dBm CW signal was used. At t = 0 the 

drone started to fly towards the radar. The ground velocity was 1.3 m/s and the initial distance to the antenna 

was 10 m. Five main regions on the spectrogram can be identified – (I) the drone is too far and SNR is 

insufficient to make the detection, (II) SNR is sufficient to detect the moving target (via Doppler effect), 

but SNR is too low to see the micro-Doppler, (III) both Doppler and micro-Doppler are seen, (IV) the drone 

is hovering next to the radar antenna (0.2 m apart) and is still heading inward, and (V) the drone is hovering 

next to the antenna (1.5 meters apart), but it is heading outward.  

Several important conclusions can be drawn from analyzing the data. The first one is on the perspective 

detectability range, which can be deduced from considering the radar equation. The range scales with the 

fourth root of the radiated power (Eq. 1) [58], [59]. Comparing the ~5 m detection with 10 dBm signal at 

our outdoor experiment and projecting the results on perspective high-grade radar, generating kW- MW 

peak signals, the proposed concept can enable classifying small drones at about Rmax = 3-5 km distance.  
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𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝑃𝑃𝑠𝑠𝐺𝐺2𝜆𝜆2𝜎𝜎

𝑃𝑃𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚(4𝜋𝜋)3𝐿𝐿𝑔𝑔𝑒𝑒𝑠𝑠
4     (1) 

where Ps – transmitted power [W]; G – Tx/Rx antenna gain (if the same antenna is used for transmission 

and receive) [linear scale]; λ central wavelength [m], c speed of light; σ – RCS [m2]; Pemin – minimum 

receiving power [W]; Lges – loss factor [linear scale] that includes atmospheric, filter matching, 

transmit/receive and a few other possible loss mechanisms [60]. Parameters of real radar systems (e.g.,[36]) 

can be substituted into Eq. 1 and suggest even better detectability ranges. Specifically, the gain of our 

antenna is 10dB, while high-grade radars can have front ends of 30-40 dB.  

The second observation is that for moderately slow-flying targets Doppler and micro-Doppler frequencies 

at the baseband are well separated. For example, kHz-scale frequencies correspond to 100m/sec velocity, 

which is very unlikely to emerge from a clutter. For example, the fastest birds, e.g., the peregrine falcon, 

can approach those but are unfortunately very unlikely to appear in urban environments.  

The third conclusion is that the signals depend on a mutual orientation between the drone and the antenna. 

On one hand, it complicates the learning procedure on pathways to the classification, but, on another, it 

might allow extracting additional information given a sufficient SNR. Those aspects, however, are outside 

the scope of this first investigation in the series.  

 
Figure 4. (a) Photograph of the outdoor experiment – low altitude flight in front of the radar antenna. (b) 

Spectrogram of the flying drone with '10000000' code. Different regimes are marked on the plot – (I) the 

drone is too far and SNR is insufficient to make the detection, (II) SNR is sufficient to detect the moving 

target (via Doppler effect), but SNR is too low to see the micro-Doppler, (III) both Dopler and micro-

Doppler are seen, (IV) the drone is hovering next to the radar antenna (0.2 m apart) and is still heading 

inward, and (V) the drone is hovering next to the antenna (1.5 meters apart), but it is heading outward. 
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2.4. Target Classification and SNR Assessment 
 
The capability to distinguish between the codes under different SNR conditions will be assessed next. 

Several classification approaches will be assessed and compared with each other on pathways to reveal a 

better methodology for perspective long-range radar measurements.  

Quite a few methods to classify targets on their micro-Doppler signatures do exist. Time-frequency analysis 

is among the widely used ones. Typically, Short-Time Fourier Transform (STFT) or, more generally, 

Continuous Wavelet Transform (CWT)), enables following the evolution of Doppler frequencies over time 

[50]. These methods provide a spectrogram-like representation of the process and, in fact, STFT was used 

to produce Figs. 2, 3, and 4. Micro-Doppler analysis of swinging human arms and legs [52], [54], [61], 

helicopter blades, flapping bird’s wings [62] was demonstrated by using this technique. The distinctive 

advantage of this methodology is the relationship between the physical model to the data, e.g., as was done 

in the discussion in Fig. 2. The drawback is the demand for a reasonable SNR, as will also become evident 

from the studies below.  Machine Learning and Pattern Recognition techniques, such as neural networks, 

support vector machines (SVM), or clustering algorithms, can be employed to automatically detect and 

classify micro-Doppler signatures from raw data [48], [50], [61], [63]–[65]. The drawback of learning 

algorithms is the demand to acquire a large data set for the algorithm training and their relatively high 

susceptibility to a new type of data, for which the method was not trained. The latter issue opens room for 

opportunities for electronic warfare, for example.  The choice of analysis technique depends on factors such 

as the specific application, the nature of the target and its movement, the available data, and the desired 

level of detail in the analysis.  

Here we have chosen two methods to infer which is better for the target classification. For the proof-of-

concept, four different codes (sticker arrangements – '00001111', '11111111', '10000000', '10101010'), will 

be distinguished by two classification algorithms. Laboratory measurements were considered to have a very 

high SNR, which is a mere approximation of reality, as the clutter is indeed suppressed, nevertheless, the 

receiver noise is still present. A part of the data set was used as a ground truth, while the rest was used for 

assessment. To assess the impact of noise on the detection probability, Gaussian white noise was 

intentionally added to the measurements. For making the statistical studies, 1000 numerical experiments 

with different noise realization have been performed. The correct classification probability was then 

extracted. Note that the search space here is very limited and contains only 4 classes. Consequently, the 

detection probability even at a very low SNR cannot fall below 25% of a completely random guess.  
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The first applied method is least squares analysis. The algorithm uses the FFT of the ground truth and 

compares it with noisy measurements using ℓ2 norm (integral over squared differences), applied to 

normalized signals. The classification is made by finding the shortest distance one between the four existing 

codes.  The red curve in Fig. 5(b) demonstrates the result – while a very reliable detection is achieved at 

high SNR, the method stops working below 12dB noise level. It is rather expected from such a brute-force 

comparative method.  

As another method for solving multi-label classification problems, we used a computer vision algorithm 

for analyzing spectrograms of the acquired raw data. The convolutional neural network (CNN) training was 

chosen, and preprocessing steps and augmentations were applied to the initial dataset. Firstly, 20 random 

subsamples of size 1000 were chosen from the initial time series, corresponding to 1 second of 

measurements. For each of the resulting time series, a spectrogram was generated and represented as a 

figure with a specific resolution of 500x500 pixels. As a result, a dataset of 460 annotated images was 

collected and used for training the neural networks. The convolutional neural network with a total of 

12,845,828 parameters was designed. The Adam optimizer and the Cross-Entropy loss function were used. 

The model was trained on 80% of the laboratory data and tested on another 20%, where Gaussian white 

noise was added in the same way, it was done for the least squares analysis method. Spectrograms for four 

considered codes with different levels of additive Gaussian noise appear in Fig. 5(a). While Micro-Doppler 

frequencies can be clearly seen for high SNRs, they disappear in the noisy background. The blue curve in 

Fig. 5(b) demonstrates the detection probability.  As expected, the graphs converge for random classification 

of 25% for low SNRs and for ultimate classification for high (above 20dB) SNRs. Furthermore, the CNN 

algorithm outperforms least squares analysis at lower SNR, which is quite important in the case of outdoor 

radar measurements. The algorithm can be further improved with hyperparameter tuning, increasing the 

number of network parameters and more data collection of the spectrograms, hence using fewer synthetic 

data.   

To assess the applicability of the method in the real environment, we applied it to the outdoor data. Those 

measurements (Fig. 4(a)) are quite noisy and performed in a heavy clutter (low flying altitudes). 

Furthermore, 7 different codes (instead of 4) were assessed. The same data augmentation process analysis 

was performed and validated on 20% of the dataset, which wasn't involved during training. The method 

demonstrated 71.4% accuracy on the validation set, highlighting the need for intensive data acquisition, 

which is well-known in the field of target classification.  
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Figure 5. Micro-Doppler codes classification. (a) Micro-Doppler spectrograms for 4 different codes, 

obtained at different SNRs (synthetic data). (b) Detection probability. Red curve - least squares analysis, 

blue - convolutional neural network, applied on a set of images (examples are in panel (a)). 

 

Discussions 

A solution for the passive labeling of small UAVs has been proposed and demonstrated.  The demand for 

extended reliability in ground control monitoring systems, which utilize radar-based sensors, necessitates 

the use of passive methods. Compared to active solutions that aim for continuous reporting of UAV 

coordinates, passive architectures do not overload wireless traffic and are less susceptible to jamming.  

The approach is based on tagging the drone’s blades with resonant stickers, which efficiently interact with 

electromagnetic radiation. Driven into rotary motion, the resonators generate geometry-specific micro-

Doppler signatures, significantly elevating them compared to those generated by untagged samples. Those 

target-specific signals become detectable from large distances, which can approach 3-5km given high-grade 

radar monitoring systems are in use. This new approach was applied to a small drone, tagged with several 

distinguishable micro-Doppler codes, which were assessed in both laboratory and outdoor conditions, thus 

verifying the methodology. Considering the perspective of micro-Doppler tagging degrees of freedom, the 

proposed method can compete with active transponders and even provide solutions in case of heavy clutter, 

low-flying altitudes, and urban environments. These aspects will become critically important in future 

applications, where small drones are anticipated to play a pivotal role in delivery missions, transforming 

logistics and transportation dynamics. 
 
Methods 

Electromagnetic design and simulations: CST Microwave Studio.  

Sample fabrication: LPKF E33 milling machine. 

Measurements and characterizations: anechoic chamber and RF peripherals. 
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Post-processing: neural network. 
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