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a b s t r a c t 

Electromagnetic scattering on a sphere is one of the most fundamental problems, which has a closed 

form analytical solution in the form of Mie series. Being initially formulated for a plane incident wave, 

the formalism can be extended to more complex forms of incident illumination. Here we present a fast 

calculation approach to address the scattering problem in the case of arbitrary illumination, incident on 

a spherical scatterer. This method is based on the plane wave decomposition of the incident illumination 

and weighted integration of Mie solutions, rotated to a global coordinate system. Tabulated solutions, 

sampled with an accurately level of sparsity, and efficient rotational transformations allow performing 

fast calculations on electrically large structures, outperforming capabilities relatively to other numerical 

techniques. Our approach is appropriate for real-time analysis of electromagnetic scattering from elec- 

trically large objects, which is essential for monitoring and control applications, such as optomechanical 

manipulation, scanning microscopy, and fast optimization algorithms. 

© 2020 Published by Elsevier Ltd. 
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. Introduction 

Electromagnetic scattering is one of the most important physi-

al phenomena, related to many practical applications [1] . For in-

tance, optical imaging systems are typically based on efficient

ollection and analysis of scattered light waves. Optomechanical

anipulation is another example, where light induces mechanical

orces on particles via scattering and absorption [ 2 , 3 ]. 

Comprehensive scattering theory was first introduced by Gustav

ie in 1908, who analyzed the interaction between spherical parti-

les and plane incident waves [ 1 , 4 ]. Since then, this formalism has

dvanced to more complicated and practical cases (e.g. particles

n an absorbing medium [5] , aspherical scatterers [6] , anisotropic

articles [7–10] , coated spheres [11] , and [12] for a recent perspec-

ive review) and nowadays it is routinely used for analysis of nu-

erous Nano photonic scenarios, including optical magnetism [13] ,

uygens metasurfaces [14] , and other frontier optical devices (e.g.

15] for a review). 

An advanced form of Mie scattering named the generalized

orentz–Mie theory (GLMT) [ 16 , 17 ] is based on the method of

eparation of variables in a modified coordinate system. Conse-

uently, a linear system that satisfy the Helmholtz equation can

e solved by the above-mentioned modified coordinate system.
∗ Corresponding author. 
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ore recently, a different approach was presented by Cui and Han

18] . According to their study, combination of two advanced com-

utation methods, namely method of moments (MoM) [19] and

nite element method (FEM) [20] , provides a generalized rigor-

us solution for many cases of arbitrary shaped particles and il-

umination sources. The above-mentioned techniques provide so-

utions for scattered fields, e.g. in the case of Gaussian beam in-

eraction with a spheroid. However, for every particular phase pat-

ern and particle position, a relatively complicated calculation pro-

ess should be performed, which might require significant compu-

ational efforts. Therefore, applications that require real-time cal-

ulations, such as particle tracking, fast changing illumination field,

nd others require development of new approaches. 

Here, we present a different approach to perform fast and ef-

cient calculations of scattered fields, resulted from arbitrary inci-

ent phase patterns that illuminate a spherical particle of any size

not necessarily electrically small). In this method, we generate a

atabase of scattering solutions. Each element in the data base cor-

esponds to a scattering of a plane wave, incoming at a certain

ngle and polarization. Hence, instead of calculating a general so-

ution for each case of an arbitrary phase pattern, we perform a

lane wave decomposition of the incoming wave front and retrieve

he multiple Mie solutions (from the above mentioned database)

o each one of the spatial Fourier components. At the next step, all

he contributions are summed up (integrated) with a careful con-

ideration of amplitude, phase, polarization, and propagation direc-

ion in the initial plane wave decomposition. 

https://doi.org/10.1016/j.jqsrt.2020.106887
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
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mailto:yuvalkashter@mail.tau.ac.il
https://doi.org/10.1016/j.jqsrt.2020.106887


2 Y. Kashter, E. Falek and P. Ginzburg / Journal of Quantitative Spectroscopy & Radiative Transfer 253 (2020) 106887 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Geometry of the basic scattering problem - a spherical particle is illuminated 

by a plane wave. 
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The challenge in the proposed technique is that each tilted

plane wave and its corresponding Mie solution is represented

in a different rotated coordinate system. In order to apply the

plane wave decomposition technique, the solutions in the database

should be represented at the same global coordinates system. Mie

solutions are typically given in spherical coordinates, hence a set

of rotations with non-uniform sampling density should be applied.

In the case of electrically small particles, scattered fields are

described by lower order multipoles and are rather smooth, sim-

plifying obtaining a high numerical accuracy with moderately low

computational effort. However, scattered field patterns of electri-

cally large particles introduce fast oscillations in space, requiring

accurate and dense numerical sampling. This problem might be se-

vere in cases where the coordinate system is rotated in different

angles. However, the representations of the rotated coordinate sys-

tem in the global system results in nonlinear changes in the axes

incremental distributions. 

In previous Mie studies, choosing a sufficient number of multi-

pole expansion terms, with respect to the size of the particle and

the ratio between the refractive indexes, was thoroughly discussed

(e.g., [21] ). Nevertheless, estimating the effect on the overall nu-

merical error due to a limited number of samples (along the spher-

ical coordinate system) has not been accurately studied and will be

shown here to be important in non-paraxial cases. 

The manuscript is organized as follows: Section 2 is a brief re-

view of Mie scattering [3] in light of consideration of angular sam-

pling densities and particle sizes. Section 3 presents a method to

calculate the scattered field resulting from a rotated plane wave in

terms of a global system. In Section 4 , the plane wave decomposi-

tion based scattering calculation of arbitrary phase distribution is

presented, including analytical overview and simulation results of

a special case of a focused Gaussian beam. 

2. Mie scattering of a single incident plane wave 

The Mie solution is given in the form of multipole series. Each

term in this expression is described by the vector spherical har-

monics that satisfy Helmholtz equation. As the scatterer gets larger

(relative to the wavelength), and as its refractive index increases

(relative to the surrounding medium), more terms in the multipole

expansion are required for an accurate electromagnetic description.

Higher multipoles have fast oscillating features at the far field.

In other words, scattering problems, involving electrically large

particles, require a denser numerical sampling of the far field.

Sparse sampling density, however, might cause an accumulative

numerical error in estimating different types of observables (e.g.

total electromagnetic field, electromagnetic forces). The subject of

numerical sampling density is particularly important when the in-

cident field has a non-uniform wave front with fast-oscillating fea-

tures. Consequently, exploring the effect of the sampling sparsity

on a range of possible electromagnetic scenarios is valuable. 

In this section, we introduce an error estimation method to ad-

dress the influence of the sampling density. For this reason, a stan-

dard Mie solution will be analyzed. Fig. 1 presents the general lay-

out of a scattering problem - a homogenous nonmagnetic spheri-

cal particle with radius a and refractive index n p , surrounded by a

uniform medium with refractive index n m 

. The origin of the global

Cartesian coordinate system r O = [ x, y, z ] is located at the center

of the scatterer. The linearly polarized incident plane wave propa-

gates along ˆ k i , which is parallel to z axis. The resulted electric field

and magnetic induction field, denoted by E i and B i , are oriented

along x and y axes, respectively. The orthogonal unit vectors ˆ u θ , ̂  u φ
and ˆ u r represent a spherical coordinate system, in which Mie solu-

tions are presented; ˆ k s represents the propagation direction of the

scattered field in every direction. The scattered electric and mag-

netic induction fields are denoted E s and B s , respectively. 
The monochromatic incident field phasors (time dependency is

 

−i ωt ) are given by: 

E i ( k i ) = E i e 
i k i ·r ˆ x 

 i ( k i ) = 

n m 

E i 
c 

e i k i ·r ˆ y (1)

here, k i = 

2 π
λ0 

n m ̂

 z , c is the speed of light in vacuum and λ0 is the

avelength in vacuum. 

Scattered fields are given by: 

E s 

(
r, ̂  k s ; ˆ k i 

)
= E i f 

(
ˆ k s , ̂  k i 

)
e i k m r 

r 

B s 

(
r, ̂  k s ; ˆ k i 

)
= 

n m 

E i 
c 

ˆ k s × f 

(
ˆ k s , ̂  k i 

)
e i k m r 

r 
, (2)

here k m 

= 

2 π
λ0 

n m 

and r � λ0 / n m 

is the distance from the center of

he sphere. The term f ( ̂  k s , ̂  k i ) is the scattering amplitude, relating

he scattered and the incident fields as follows: 

f 

(
ˆ k s , ̂  k i 

)
= 

1 

−i k m 

N ∑ 

n 

2 n + 1 

n ( n + 1 ) 

[
( a n ̃  πn + b n ̃  τn ) cosφ ˆ u θ

− ( a n ̃  τn + b n ̃  πn ) sinφ ˆ u φ

]
, (3)

here the a n and b n are the Mie coefficients, the terms ˜ πn and

˜ n are ”angle-dependent functions ” [1] . f ( ̂  k s , ̂  k i ) depends on ( θ ∈
[0, π ], ϕ ∈ [0, 2 π ]), which should be sampled on a finite set of

iscrete coordinates. Dividing θ and ϕ into a large number of seg-

ents will increase the sampling density, and consequently, will

ecrease the accumulated numerical errors. However, in order to

educe computational efforts (especially relevant to real-time ap-

lications), the sampling density should be reduced and, under cer-

ain circumstances, can affect the results. Hereafter, we will pro-

ide an assessment of the required sampling density, investigating

he conversance of the total scattered power. 

The scattering cross-section ( σ scat ) can be calculated in two

ays. The first one is given in a closed form by analytical inte-

ration of spherical harmonics as follows: 

( 1 ) 
scat = 

2 π

k 2 m 

N ∑ 

n =1 

( 2 n + 1 ) 
(| a n | 2 + | b n | 2 

)
. (4)

Differential cross-section, on the other hand, is directly derived

rom the scattering amplitude: 

d σscat 

d

= 

∣∣∣ f 

(
ˆ k s , ̂  k i 

)∣∣∣2 

, (5)

here d 
 represents a unit solid angle around 

ˆ k s . Integrating the

ifferential cross-section over all scattering angles will eventually

rovide the same expression of σ (2) 
scat : 

( 2 ) 
scat = 

∮ ∣∣∣ f 

(
ˆ k s , ̂  k i 

)∣∣∣2 

d
. (6)
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Fig. 2. Impact of angular sampling density on Mie scattering. (a–c) Mie coefficients a n and b n for three size parameters ( k m a = 1, 20, and 50, respectively). Real and imaginary 

parts are represented with red and green colors, respectively; (d–f) Normalized scattering amplitudes at E and H planes, as the function of θ in a logarithmic scale. The 

E-plane (green line) and H-plane (red line) represent the scattering amplitudes in ϕ = 0 and π
2 

, respectively; (g–i) Relative error in total scattering ( ηscat , Eq . 8) versus the 

size parameter for three sampling density rates L = 128, 256, and 512, respectively. 
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In terms of discrete representation, following Eq. (6) , the scat-

ering cross-section can be written in the form of: 

( 2 ) 
scat = 

L 1 ∑ 

l 1 =1 

L 2 ∑ 

l 2 =1 

∣∣ f 
(
θl 1 , φl 2 

)∣∣2 
sin 

(
θl 1 

)
�θ�φ, (7) 

here L 1 and L 2 are the number of discrete samples along θ and

, respectively; �θ = 

π
L 1 

and �φ = 

2 π
L 2 

are the corresponding sam-

ling densities. For the sake of simplicity, to get an equal sampling

ensity along θl 1 
and φl 2 

, the relation L 2 = 2 L 1 = L is chosen, where

 is the sampling density rate in our notations. From Eq. (4) , one

an conclude that regardless of the discretization effects, the scat-

ering cross section σ (1) 
scat is given only by the summation of Mie

oefficients, as long as one is taking into consideration a sufficient

umber of multipoles. However, the numerical representation of
he scattering cross-section σ (2) 
scat ( Eq. (7) ) is directly affected by the

ampling density. Hence, comparing the numerical σ (2) 
scat and exact

(1) 
scat expression provides an efficient numerical error estimation. 

he numerical error, derived from the scattering cross-section, is

efined as follows: 

scat = 

∣∣ σ ( 1 ) 
scat − σ ( 2 ) 

scat 

∣∣
σ ( 1 ) 

scat 

× 100% . (8) 

Fig. 2 shows the results of analysis for several sphere’s sizes

excitation wavelength λ0 = 633 nm, surrounding medium is wa-

er ( n m 

= 1.33), glass particle n p = 1.5). Mie coefficients were cal-

ulated for a range of size parameters k m 

a ∈ [1, 100], where num-

er of multipoles ( N ) increases with respect to k m 

a ( Fig. 2 (a–c)).

n Fig. 2 (a–c), three examples of Mie coefficients are plotted, ac-
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cording to k m 

a = 1, 20, and 50, respectively. The corresponding

Mie coefficients a n and b n are presented in Fig. 2 . (a–c), where the

number of multiple expansions is N = 5, 30 and 65, respectively.

Negligible magnitudes of Mie coefficients in each case ( a 2 –a 5 and

b 2 –b 5 , in Fig. 2 (a); a 22 –a 30 and b 22 –b 30 in Fig. 2 (b); a 55 –a 65 and

b 55 –b 65 in Fig. 2 (c)), indicate that a sufficient number of multi-

poles has been chosen (relatively to k m 

a and n p ). Fig. 2 (e and f)

present the three corresponding scattering amplitudes, where the

green curve represents the distribution in the x-z plane (E-plane),

and the blue curve represents the distribution in the y-z lane (H-

plane). Fig. 2 (g–i) present the errors ( Eq. (8) ) for three different

sampling density rates ( L = 128,256, and 512). 

In the first example, presented in Fig. 2 (a,d), the size of the

sphere’s radius is 8.3 times smaller than the free space wave-

length. As a result, the spatial variation of the scattering amplitude

( Fig. 2 (d)) is low, and therefore, the sampling density rate L can be

smaller than 128, while the resulting numerical error ηscat remains

negligible. In the second case, presented in Fig. 2 (b,e), the sphere

radius is 2.4 times larger than the wavelength. In this case a sig-

nificant spatial variation of the scattering amplitude can be noticed

( Fig. 2 (e)). According to Fig. 2 (h), in order to decrease ηscat to be

lower than 0.5%, L should be larger than 256. In the third example,

the radius is 11.96 times the wavelength, and therefore, the spa-

tial variation is significantly larger than in previous cases ( Fig. 2 (i)).

Consequently, here L is chosen to be 256 and the numerical error

ηscat will be almost 1%. Nevertheless, if one desires to decrease the

error beneath 1%, the density rate should be chosen to be higher

(e.g., according to Fig. 2 , by choosing L = 512 the resulting ηscat is

approximately 0.2%). 

3. Rotation of Mie solution in a global coordinate system 

An arbitrary illumination can be decomposed into a superposi-

tion of plane waves. A reliable calculation of the scattered field,

in this case, requires adapting Mie solutions for incoming plane

waves propagating in any incident angle and polarization direction.

Weighted summation of these results will provide an accurate so-

lution for the scattering problem. 

In order to apply the beforehand discussed superposition prin-

ciple, ‘rotated’ Mie solutions should be represented in terms of to

the same ‘global’ coordinate system (taking into consideration the

polarization state and the incident wavevector). In this case, the

transformation should be performed using spherical harmonics-

based expressions for the multipole decomposition. 

Transformations of this kind have been already presented be-

fore, e.g. in a series of five manuscripts by G. Gouesbet et al. [22–

26] . Specifically, the tilted incidence is treated in [25] . This ap-

proach considers the plane wave as a special case of on-axis beams

with cylindrical symmetry. The beam shape coefficients (used in

the above mentioned GLMT studies [ 16 , 17 ]) is then modified by

the tilting angles. As a result, the mathematical expression for

the transformation is complicated and requires additional calcula-

tions. For example, in order to modify the above mentioned angle-

dependent functions (presented if Eq. (3) ), taking into considera-

tion the arbitrary beam shape, additional contributions of the Leg-

endre functions presented in [25] are required, which might cause

the data processing to be less effective, in terms of duration of

processing, compared to the simple case of the Mie calculation

presented before. In this section, we will provide a numerical ap-

proach for the above-mentioned scattering problem of a rotated

incident plane wave, where the solution will be given in terms of

the unrotated global system. The analytical expression is similar to

the basic case of Mie scattering without any use of the beam shape

coefficients, required in the GLMT. In addition, by using the error

estimation technique, we can estimate the impact of the sampling
ensities, which will be shown to play a significant roles in the

ase of large tilting angles. 

Fig. 3 resembles the scenario, presented in Fig. 1 , while the inci-

ent wave comes with an angle. In order to describe the scattering

roblem in a global coordinate system, three Euler angles α, β , γ
re defined. The global system r o is the one, considered in Fig. 1 .

he coordinates x’,y’,z’ form an intermediate system, accounting for

otations α, β [ Fig. 3 (a)]. The system x”,y”,z”, denoted ˜ r o , is the ro-

ated system resulted by the rotations α, β and the tilt γ along

’ due to the new polarization orientation. The propagation direc-

ion 

ˆ k i is oriented along z”, where E i and B i are along x” and y”,

espectively. 

In Fig. 3 (b), similar to the previous section, the scattered field is

escribed by spherical coordinates that can be related to the global

ystem r o by [ r , θ , ϕ]; or can be given in terms of ˜ r o by [ r, ˜ θ, ˜ φ] . 

As it was mentioned before, the solution in r o system is more

omplicated than ˜ r o , coordinates, where the later is the Mie scat-

ering case shown in the previous section. Therefore, in this sec-

ion, we will relate the mathematical expression to the global

ystem r o , while maintaining the simplicity provided by solving the

roblem relatively to the rotated system ˜ r o . In other words, the fi-

al solution will be given in terms of r o , but the calculations will

e based on ˜ r o . In order to do so, the variables ˜ θ , ˜ φ and θ , ϕ will

e associated by the Euler angles α, β , γ . 

The unit vector ˆ u r 0 ( θ, φ) = sinθcosφ ˆ u x + sinθsinφ ˆ u y + cosθ ˆ u z 
epresents an arbitrary direction in terms of r o . The transforma-

ion matrix ˜ A (is given in the appendix) provides the expression of

ector ˆ u r 0 ( θ, φ) in terms of r ′ ′ o as follows: 

ˆ 
 ˜ r 0 ( θ, φ) = 

˜ A ( α, β, γ ) · ˆ u r 0 ( θ, φ) . (9)

Next, the angles ˜ θ, ˜ φ, can be expressed by the following geo-

etrical relations: 

˜ ( θ, φ;α, β, γ ) = acos 
(

ˆ u ˜ r 0 ( θ, φ) · ˆ z ′′ 
)
, (10)

˜ ( θ, φ;α, β, γ ) = atan 

(
ˆ u ˜ r 0 ( θ, φ) · ˆ y ′′ 
ˆ u ˜ r 0 ( θ, φ) · ˆ x ′′ 

)
. (11)

Following Eqs. (9 )–(11 ), the scattering amplitude can now be

alculated in the global coordinate system. 

In order to underline the nonlinear nature of the transforma-

ions ( Eqs. (10) and (11 )), a special case of rotation along x axis

ill be considered. 

Fig. 4 (a–c) are the colormaps of ˜ θ ( θ, φ) for β = 0 , π12 , 
π
6 , re-

pectively, where α = γ = 0. Fig. 4 (d,e) show two cross sec-

ions of the transformations, along the vertical planes φ = 

π
2 and

= 1.9 π , and clearly show the nonlinearity on the transformation.

Fig. 5 shows three scattering amplitudes (normalized, in loga-

ithmic scale) for different incident angles, chosen to present the

ata in Fig. 4 . The particle’s size parameter is k m 

a = 5 ( n p = 1.5,

 m 

= 1.33). According to the results (presented in Fig. 5 ) one cane

ealized the rotation of the scattering amplitude with the incident

ngle, as expected, verifying the of the applied set of transforma-

ions. 

According to Fig. 5 , one can realize that with the increasing in

he angle β , the corresponded scattering amplitude distributions

re changed in both orthogonal planes ϕ = 0 ° and ϕ = 90 ° (i.e.

-x and z-y planes), represented by the green and red lines, re-

pectively. Additionally, in ϕ = 90 °, the symmetry breaks, where

he forward scattering directions is tilted according to the angle β .

onlinearity of angular ( Eqs. (10) and (11 )) affects the sampling

istributions � ˜ θ and � ˜ φ, which are no longer uniform. How-

ver, using the error estimation presented in the previous sec-

ion, one can straightforwardly calculate the error with respect

o the change in the Euler angles. Following Eq. (8) , we calcu-

ated ηscat with respect to different rotations along the x axis,
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Fig. 3. Geometry of the scattering problem with a tilted incoming plane wave. (a) the incoming plane wave that propagates along the intermediate and the rotated systems 

with associated Euler angles; (b) the relation between the spherical coordinates, the unrotated system r 0 and the rotated system ˜ r 0 . 

Fig. 4. Color map of ˜ θ ( θ, φ) . (a) the incident wave is parallel to the global system; (b,c) the incident wave is tilted in π
12 

and π
6 

along x , respectively. (d,e) two cross-sections 

along 0.5 π and 1.9 π (denoted a 1,2 , b 1,2 , and c 1,2 , respectively), corresponded to the distributions presented in (a–c). 
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.e. α = γ = 0, where β is varied. In addition, the sampling density

ate is L = 64,128,256, and 512. 

Fig. 6 (a) shows the numerical error for several sampling densi-

ies and underlines the impact of the transformation on the accu-

acy. It can be seen that the numerical error grows with increasing

he angle of incidence in respect to the optical axis ( Fig. 3 ) and

ecome quite significant in cases where extremely high numeri-

al apertures are required. Furthermore, increasing the size of the

articles leads to appearance of fast-oscillating features, which can

e distorted by the rotation. Fig. 6 (b) demonstrates this effect by

nalyzing the numerical arrow for four different four size param-

ters k m 

a = 0.1, 2.5, 5 and 10 (the sampling density rate here is

 = 512). 

. Scattering of an arbitrary incident waveform 

In this part we will present an efficient numerical approach to

alculate the scattering for an arbitrary wave front. The illustration

hown in Fig. 7 , describes a special case of a focused linearly po-

arized Gaussian beam. 

Incident beam in the spatial frequency domain (also known as

he k space) is represented as follows: 

˜ 

 i ( k t ) = 

∫ 
E i ( r t ) exp ( −i k t · r t ) d 

2 r t , (12) 

here, r t = x ̂ x + y ̂  y is the transverse space located at the center

f the particle; k t = k x ̂  x + k y ̂  y is the transverse spectral wavenum-

er corresponded to r t , such that k t • r t = n m 

( k x x + k y y ); the

ilde sign (~) denotes a Fourier transformed quantity. The resulted
˜ 
 i ( k t ) consists of multiple plane waves, each of which is oriented

nd linearly polarized in different direction and can have an addi-

ional phase factor. Three Euler angles (shown in Fig. 3 , Section 3 )
re needed for a complete representation. Following the plane

ave decomposition method presented in [27] , any given plane

ave can be represented by a superposition of Transverse-Electric

TE) and Transverse-Magnetic (TM) components (represented by
˜ 
 

( T E ) 
i 

and 

˜ E ( T M ) 
i 

, respectively) as follows: 

˜ 
 i ( k t ) = 

˜ E ( 
T E ) 

i 
ˆ n ( k t ) + 

˜ E ( 
T M ) 

i 
ˆ t ( k t ) . (13) 

The unit vectors ˆ n ( k t ) and 

ˆ t ( k t ) represent the normal and

ransversal directions, relatively to the plane of incident: 

ˆ  ( k t ) = 

1 

k t 

(
k y ̂  x − k x ̂  y 

)
, ˆ t ( k t ) = 

k z 

k m 

k t 

(
k x ̂  x + k y ̂  y 

)
− k t 

k m 

ˆ z , (14) 

here, k t = 

√ 

k 2 x + k 2 y and k z = 

√ 

k 2 m 

− ( k 2 x + k 2 y ) . 

The magnitudes ˜ E ( T E ) 
i 

and 

˜ E ( T M ) 
i 

can be calculated by a scalar

ultiplication as follows: 

˜ E ( 
TE ) 

i 
= 

˜ E i ( k t ) · ̂ n ( k t ) = 

1 

k t 

(
k y ̃  E i x − k x ̃  E i y 

)
˜ 
 

( TM ) 
i 

= 

˜ E i ( k t ) ·̂ t ( k t ) = 

1 

k z k t 

(
k x ̃  E i x + k y ̃  E i y 

)
. (15) 

Once the TE-TM ratio and the propagation orientation in the

patial frequency domain are known ( Eq. (15 )), three Euler angles,

orresponding to k t can be extracted as follows: 

α = acos 

(
k z 

k m 

)

β = acos 

(
k x 

k t 

)

= atan 

(
˜ E ( 

T M ) 
i 

˜ E ( 
T E ) 

)
(16) 
i 
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Fig. 5. Plots of the scattering amplitude versus the angle θ for three different incident angles β = 0 , π
12 

, π
6 

: (a1–c1) polar representation along H-plane; (a2–c2) polar 

representation along E-plane; (a3–c3) two dimensional plot along H-plane; (a4 - = c4) two dimensional plot along E-plane. 
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Fig. 6. The numerical error resulted by rotations along the x axis. (a) the numerical error resulted by rotations along the x axis according to four different sampling density 

rates; (b) the numerical error according to four different size parameters for β = [0, 45 °]. 

Fig. 7. Geometry of a general scattering problem. 
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According to Eqs. (10) and (11 ), presented in Section 3 , the

arped angles ˜ θ and 

˜ φ can now be determined for every k x ,k y , ac-

ording to Eq. (16 ). 

Next, according to Eqs. (2) and (3) (presented in Section 2 ),

or any incoming plane wave (in the spatial frequency do-

ain) the resulted scattered electric and magnetic fields ˜ E s ( k t ) ,
˜ 
 s ( k t ) can be calculated in respect to the input argument

˜ ( θ, φ;α( k t ) , β( k t ) , γ ( k t ) ) and 

˜ φ( θ, φ;α( k t ) , β( k t ) , γ ( k t ) ) . 

Finally, applying inverse Fourier transform enables to derive the

cattered fields of the arbitrary incident wave front, denoted E 

tot 
s 

nd B 

tot 
s , respectively: 

 

tot 
s (r 0 ) = 

exp (ik m 

r) 

(2 π) 
2 
r 

∫ ˜ E i (k t ) f 
(̂

 k s 

(
˜ θ, ˜ φ

)
, ̂  k i 

(
˜ θ, ˜ φ

))
exp (i k t · r 0 ) d 

2 k t k t , 

 

tot 
s (r 0 ) = 

exp (ik m 

r) 

c (2 π) 
2 
r 

∫ ̂ k s 

(
˜ θ, ˜ φ

)
× ˜ E i (k t ) f ( ̂  k s 

(
˜ θ, ˜ φ) , ̂  k i 

(
˜ θ, ˜ φ

))
exp ( i k t · r 0 ) d 

2 k t k t . 

(17) 
To implement a numerical calculation, the space k t is dis-

retized by k 1 = −K 1 ,.., 0, ... K 1 and k 2 = −K 2 ,.., 0, ... K 2 , where

 1 , K 2 ≤ k m 

represent the maximal frequency along the horizon-

al and vertical directions in the spatial frequency domain, re-

pectively. The FT is implemented by a Discrete Fourier Trans-

orm (DFT), for example [28] , where the scaling factor (depen-

ent by λ0 and n m 

) is taken into consideration. Once the parame-

er size and the medium are known, a set of scattering amplitudes,

enoted f̄ ( θl 1 
, φl 2 

; k 1 , k 2 ) , corresponded to the arbitrary ˜ E i ( k 1 , k 2 )

an be calculated and saved to a generalized scattering amplitudes

atabase. Next, according to the inverse FT presented in Eq. (17 ),

he resulted scattered fields can be integrated as follows: 

 

tot 
s (r 0 ) = 

exp (ik m 

r) 

(2 π) 
2 
r 

∑ 

k 1 ,k 2 

˜ E i ( ( k 1 , k 2 ) ) f 
(
θl 1 , φl 2 ; k 1 , k 2 

)
�k 1 �k 2 

 

tot 
s (r 0 ) = 

exp (ik m 

r) 

c (2 π) 
2 
r 

∑ 

k 1 ,k 2 

̂ k s 

(
θl 1 , φl 2 

)
× ˜ E i ( ( k 1 , k 2 ) ) 

f 
(
θl 1 , φl 2 ; k 1 , k 2 

)
�k 1 �k 2 , 

(18) 

here, �k 1 = 2 K 1 / M and �k 2 = 2 K 2 / N is the sampling density at

he spatial domain. M and N represent the amount of pixels along

he horizontal and vertical dimensions, respectively. 

By doing so, for every arbitrary phase pattern, the DFT can

e calculated and multiplied by the generic scattering ampli-

ude f̄ ( θl 1 
, φl 2 

; k 1 , k 2 ) , which is not dependent by the incident

hase pattern or its polarization. In other words, the scattering

mplitude, which is dependent by the arguments k x ,k y can be re-

rieved from a scattering amplitude database that was calculated

n advance and is needed to be calculated only once. 

The example, presented in Fig. 8 demonstrates the above men-

ioned special case of a focused Gaussian beam linearly polarized

long x direction, with a wavelength of λ0 = 1 μm and three dif-

erent cases of beam waists, w 0 = 1, 5 and 10 μm. The discrete

pace consists of N = M = 65 pixels with a pixel size of λ0 /25.

he refractive index of the sphere is n p = 1.5 and it is surrounded

y air ( n m 

= 1). Moreover, the corresponded spatial frequency ( k -

pace) is limited by K 1 = K 2 = 0.05 k m 

. In other words, the maximal

angle involved in the integration is βmax = 4.05 ° . 
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Fig. 8. Scattering of a Gaussian beam on a dielectric sphere the scattering amplitude as a function of θ . polar representation at the E and H plane and their two dimensional 

corresponded plots. (a–d) waist radius of 10 μm; (e–h) waist radius of 5 μm; (i–l) waist radius of 1 μm. 

Fig. 9. scattering error; (a) tree dimensional mesh of ηscat versus k x and k y . 
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From Fig. 8 (a–d), one can realize that a beam waist, which is

20 times larger than the sphere’s radius, is resulting in a scatter-
ng amplitude (represented by the solid line) that is identical to

he scattering amplitude corresponded to an equivalent plane wave

represented by the dashed line) that is based on the same physical

onditions (e.g. wavelength, refractive index of the medium). How-

ver, the smaller the waist (i.e. closer to the size of the spherical

catterer) additional spectral frequencies are becoming increasingly

ominant. 

In the previous sections we presented a technique to esti-

ate the numerical error resulted by the limited sampling den-

ity. In particular, in Section 3 we have analyzed the effect oc-

urring due to the change in the field orientation relatively to the

lobal system. The scattering error for different angles of incidence

scat ( k x ,k y ) In Fig. 9 , one can realize that the maximal error occurs

n the maximal spectral frequencies, where k 1 = K 2 = 0.05 k (cor-

esponding to βmax = 4.05 °) is approximately 1.4%. 

. Outlook and conclusions 

A problem of arbitrary wave front scattering from a sphere have

een considered. Unlike the GLMT, where the scattering is calcu-

ated by the beam shape coefficient for each phase pattern (in-

luding tilted plane wave) in a different modified coordinate sys-

em, our approach is based on retrieving the data form an existing

ata base of Mie solutions. We perform a plane wave decomposi-

ion of the incident illuminations and apply a set of rotations to
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ring a weighted sum of Mie solutions (each one corresponds to

 certain incident plane wave with its own phase and amplitude)

o a global coordinate system. This method provides a significant

omputational advantage to address any incident waveform in a

ast and efficient way. 

A natural use case for the proposed technique is when real-

ime calculations of scattering problems are needed. Possible ap-

lications include scanning microscopy with focused beams [29] ,

ynamic structured illumination-based imaging systems [30] and

any others. Another example is holographic optical tweezers [31] ,

here real-time arbitrary phase patterns are used to control par-

icle’s motion. Systems with active control require obtaining real-

ime feedback [32] , based on solution of scattering problem from

 moving particle [ 33 , 34 ], the electromagnetic forces and is based

n the scattered field, can be easily calculated and updated in real

ime. 
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ppendix A 

In general, the rotation matrix ˜ A ( α, β, γ ) can be represented by

he following nine components as follows 

˜ 
 ( α, β, γ ) = 

⎛ 

⎝ 

˜ A 11 
˜ A 12 

˜ A 13 

˜ A 21 
˜ A 22 

˜ A 23 

˜ A 31 
˜ A 32 

˜ A 33 

⎞ 

⎠ , (A1) 

here each of the component is given by the Euler angles 

˜ 
 11 = cos ( γ ) cos ( β) 

˜ 
 12 = sin ( γ ) sin ( α) cos ( β) − cos ( γ ) sin ( β) 

˜ 
 13 = cos ( γ ) sin ( α) cos ( β) + sin ( γ ) sin ( β) 

˜ 
 21 = cos ( α) sin ( β) 

˜ 
 22 = sin ( γ ) sin ( α) sin ( β) + cos ( γ ) cos ( β) 

˜ 
 23 = cos ( γ ) sin ( α) sin ( β) − sin ( γ ) cos ( β) 

˜ 
 31 = −sin ( α) 

˜ 
 32 = sin ( γ ) cos ( α) 

˜ 
 33 = cos ( γ ) cos ( α) 

(A2) 
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